Skip to main content
Log in

Shear Characterization of Adhesive Layers by Advanced Optical Techniques

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

With adhesive bonding, design can be oriented towards lighter structures because of the direct weight savings over fastened or welded joints and also due to the flexibility to joint different materials. Cohesive Zone Models (CZM) are a powerful design tool, although the CZM laws of the adhesive bond in tension and shear are required as input in the models. This work experimentally evaluates the shear fracture toughness (G IIC) and CZM laws of bonded joints for three adhesives with distinct ductility. G IIC was characterized by conventional and the J-integral techniques. Additionally, by the J-integral technique, the precise shape of the cohesive law was defined. For the J-integral, a digital image correlation method is used to estimate the adhesive layer shear displacement at the crack tip (δ s) during the test, coupled to a Matlab® sub-routine for extraction of this parameter automatically. As output of this work, fracture data is provided in shear for each adhesive, showing the marked differences between the three adhesives evaluated. This information enables the subsequent strength prediction of bonded joints under this mode of loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. da Silva LFM, Öchsner A, Adams RD (eds) (2011) Handbook of adhesion technology. Springer, Heidelberg

    Google Scholar 

  2. Klarbring A (1991) Derivation of a model of adhesively bonded joints by the asymptotic expansion method. Int J Eng Sci 29:493–512. doi:10.1016/0020-7225(91)90090-P

    Article  MathSciNet  MATH  Google Scholar 

  3. Campilho RDSG, Banea MD, Neto JABP, da Silva LFM (2013) Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes Adhes 44:48–56. doi:10.1016/j.ijadhadh.2013.02.006

    Article  Google Scholar 

  4. Andersson T, Stigh U (2004) The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int J Solids Struct 41:413–434. doi:10.1016/j.ijsolstr.2003.09.039

    Article  Google Scholar 

  5. Adams R, Comyn J, Wake W (1997) Structural adhesive joints in engineering, 2nd edn. Chapman and Hall, Abingdon

    Google Scholar 

  6. Ripling E, Mostovoy S, Patrick R (1964) Application of fracture mechanics to adhesive joints. ASTM STP 360:5–19

    Google Scholar 

  7. Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int J Solids Struct 46:31–51. doi:10.1016/j.ijsolstr.2008.08.019

    Article  Google Scholar 

  8. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104. doi:10.1016/0022-5096(60)90013-2

    Article  Google Scholar 

  9. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129. doi:10.1016/s0065-2156(08)70121-2

    Article  MathSciNet  Google Scholar 

  10. Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed-mode interface toughness. J Mech Phys Solids 41:1119–1135. doi:10.1016/0022-5096(93)90057-M

    Article  MATH  Google Scholar 

  11. de Moura MFSF, Gonçalves JPM, Chousal JAG, Campilho RDSG (2008) Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints. Int J Adhes Adhes 28:419–426. doi:10.1016/j.ijadhadh.2008.04.004

    Article  Google Scholar 

  12. Campilho RDSG, Banea MD, Neto JABP, da Silva LFM (2012) Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations. J Adhes 88:513–533. doi:10.1080/00218464.2012.660834

    Article  Google Scholar 

  13. Lee MJ, Cho TM, Kim WS, Lee BC, Lee JJ (2010) Determination of cohesive parameters for a mixed-mode cohesive zone model. Int J Adhes Adhes 30:322–328. doi:10.1016/j.ijadhadh.2009.10.005

    Article  Google Scholar 

  14. de Moura MFSF, Campilho RDSG, Gonçalves JPM (2008) Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Compos Sci Technol 68:2224–2230. doi:10.1016/j.compscitech.2008.04.003

    Article  Google Scholar 

  15. de Moura MFSF, Campilho RDSG, Gonçalves JPM (2009) Pure mode II fracture characterization of composite bonded joints. Int J Solids Struct 46:1589–1595. doi:10.1016/j.ijsolstr.2008.12.001

    Article  MATH  Google Scholar 

  16. Campilho RDSG, de Moura MFSF, Pinto AMG, Morais JJL, Domingues JJMS (2009) Modelling the tensile fracture behaviour of CFRP scarf repairs. Compos Part B 40:149–157. doi:10.1016/j.compositesb.2008.10.008

    Article  Google Scholar 

  17. Flinn BD, Lo CS, Zok FW, Evans AG (1993) Fracture-resistance characteristics of a metal-toughened ceramic. J Am Ceram Soc 76:369–375. doi:10.1111/j.1151-2916.1993.tb03794.x

    Article  Google Scholar 

  18. Mello AV, Liechti KM (2006) The effect of self-assembled monolayers on interfacial fracture. J Appl Mech 73:860–870. doi:10.1115/1.1940662

    Article  MATH  Google Scholar 

  19. Pandya KC, Williams JG (2000) Measurement of cohesive zone parameters in tough polyethylene. Polym Eng Sci 40:1765–1776. doi:10.1002/pen.11308

    Article  Google Scholar 

  20. Campilho RDSG, Moura DC, Gonçalves DJS, da Silva JFMG, Banea MD, da Silva LFM (2013) Fracture toughness determination of adhesive and co-cured joints in natural fibre composites. Compos Part B 50:120–126. doi:10.1016/j.compositesb.2013.01.025

    Article  Google Scholar 

  21. Leffler K, Alfredsson KS, Stigh U (2007) Shear behaviour of adhesive layers. Int J Solids Struct 44:530–545. doi:10.1016/j.ijsolstr.2006.04.036

    Article  MATH  Google Scholar 

  22. Ouyang Z, Li G (2009) Nonlinear interface shear fracture of end notched flexure specimens. Int J Solids Struct 46:2659–2668. doi:10.1016/j.ijsolstr.2009.02.011

    Article  MATH  Google Scholar 

  23. Ji G, Ouyang Z, Li G (2011) Effects of bondline thickness on Mode-II interfacial laws of bonded laminated composite plate. Int J Fract 168:197–207. doi:10.1007/s10704-010-9571-9

    Article  Google Scholar 

  24. Ji G, Ouyang Z, Li G (2012) Local interface shear fracture of bonded steel joints with various bondline thicknesses. Exp Mech 52:481–491. doi:10.1007/s11340-011-9507-y

    Article  Google Scholar 

  25. Carlberger T, Stigh U (2010) Influence of layer thickness on cohesive properties of an epoxy-based adhesive—an experimental study. J Adhes 86:816–835. doi:10.1080/00218464.2010.498718

    Article  Google Scholar 

  26. Marzi S, Biel A, Stigh U (2011) On experimental methods to investigate the effect of layer thickness on the fracture behavior of adhesively bonded joints. Int J Adhes Adhes 31:840–850. doi:10.1016/j.ijadhadh.2011.08.004

    Article  Google Scholar 

  27. Stigh U, Alfredsson K, Biel A (2009) Measurement of cohesive laws and related problems. In: Proceedings of the ASME Int Mech Eng Congress and Exposition

  28. Campilho RDSG, Banea MD, Pinto AMG, da Silva LFM, de Jesus AMP (2011) Strength prediction of single- and double-lap joints by standard and extended finite element modelling. Int J Adhes Adhes 31:363–372. doi:10.1016/j.ijadhadh.2010.09.008

    Article  Google Scholar 

  29. Faneco TMS (2014) Caraterização das propriedades mecânicas de um adesivo estrutural de alta ductilidade, MSc Thesis, Instituto Superior de Engenharia do Porto, Portugal

  30. Compston P, Jar PYB, Burchill PJ, Takahashi K (2001) The effect of matrix toughness and loading rate on the mode-II interlaminar fracture toughness of glass-fibre/vinyl-ester composites. Compos Sci Technol 61:321–333. doi:10.1016/S0266-3538(00)00226-8

    Article  Google Scholar 

  31. Elmarakbi A (ed) (2014) Advanced composite materials for automotive applications: Structural integrity and crashworthiness. Wiley, Hoboken

    Google Scholar 

  32. Wang Y, Williams JG (1992) Corrections for mode II fracture toughness specimens of composite materials. Compos Sci Technol 43:251–256. doi:10.1016/0266-3538(92)90096-L

    Article  Google Scholar 

  33. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386. doi:10.1115/1.3601206

    Article  Google Scholar 

  34. Ameli A, Papini M, Schroeder JA, Spelt JK (2010) Fracture R-curve characterization of toughened epoxy adhesives. Eng Fract Mech 77:521–534. doi:10.1016/j.engfracmech.2009.10.009

    Article  Google Scholar 

  35. Ji G, Ouyang Z, Li G, Ibekwe S, Pang SS (2010) Effects of adhesive thickness on global and local mode-I interfacial fracture of bonded joints. Int J Solids Struct 47:2445–2458. doi:10.1016/j.ijsolstr.2010.05.006

    Article  MATH  Google Scholar 

  36. Campilho RDSG, Moura DC, Banea MD, da Silva LFM (2014) Adherend thickness effect on the tensile fracture toughness of a structural adhesive using an optical data acquisition method. Int J Adhes Adhes 53:15–22. doi:10.1016/j.ijadhadh.2014.01.015

    Article  Google Scholar 

  37. Pelfrene J, Van Dam S, Paepegem V (2015) Numerical analysis of the peel test for characterisation of interfacial debonding in laminated glass. Int J Adhes Adhes 62:146–153. doi:10.1016/j.ijadhadh.2015.07.010

    Article  Google Scholar 

  38. Desai CK, Basu S, Parameswaran V (2015) Determination of traction separation law for interfacial failure in adhesive joints at different loading rates. J Adhes. doi:10.1080/00218464.2015.1046986

    MATH  Google Scholar 

  39. Constante CJ, Campilho RDSG, Moura DC (2015) Tensile fracture characterization of adhesive joints by standard and optical techniques. Eng Fract Mech 136:292–304. doi:10.1016/j.engfracmech.2015.02.010

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sika® Portugal for supplying the adhesive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. S. G. Campilho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitão, A.C.C., Campilho, R.D.S.G. & Moura, D.C. Shear Characterization of Adhesive Layers by Advanced Optical Techniques. Exp Mech 56, 493–506 (2016). https://doi.org/10.1007/s11340-015-0111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0111-4

Keywords

Navigation