Skip to main content

Advertisement

Log in

Evaluation of Residual Stresses Relaxation by Post Weld Heat Treatment Using Contour Method and X-ray Diffraction Method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The residual stresses in electron beam welded Titanium alloy before and after post weld heat treatment (PWHT) are measured by both of the contour method and X-ray diffraction method. The application of X-ray diffraction method on the surface of welded structure was used to confirm the results of the contour method induced by interpolation from CMM measuring position which is limited near the structure surface. The welding residual stresses are characterized, as well as the residual stress relaxation by PWHT at soaking temperatures of 500 and 650 °C and holding times ranging from 0 min to 2 h respectively. The measured results show that the maximum welding residual stress without PWHT is 550 MPa located inside the plate. The relaxation of the residual stresses from PWHT mainly depend on soaking temperature, and occurs most both in the heating stage and holding stage. The residual stresses are reduced to a limited value after the PWHT with soaking temperature of 650 °C and 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(12):103–114. doi:10.1016/0921-5093(96)10233-1

    Article  Google Scholar 

  2. De A, DebRoy T (2011) A perspective on residual stresses in welding. Sci Technol Weld Join 16(3):204–208. doi:10.1179/136217111X12978476537783

    Article  Google Scholar 

  3. Liu C, Wu B, Zhang JX (2010) Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding. Metall Mater Trans B 41B:1129–1138. doi:10.1007/s11663-010-9408-y

    Article  Google Scholar 

  4. Thomas G, Ramachandra V, Ganeshan R (1993) Effect of pre- and post-weld heat treatments on the mechanical properties of electron beam welded Ti-6Al-4V alloy. J Mater Sci 28(18):4892–4899. doi:10.1007/BF00361152

    Article  Google Scholar 

  5. Huang BY, Li CG, Shi LK, Qiu GZ, Zuo TY (2006) China materials engineering cannon. Chemical Industry Press, Beijing

    Google Scholar 

  6. Li WY, Wu H, Ma TJ, Yang CL, Chen ZW (2012) Influence of parent metal microstructure and post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti-6Al-4V joint. Adv Eng Mater 14(5):312–318. doi:10.1002/adem.201100203

    Article  Google Scholar 

  7. Akbarzadeh I, Sattari-Far I, Salehi M (2010) Numerical and experimental study of the effect of short-term and long-term creep modeling in stress relaxation of a multi-pass welded austenitic stainless steel pipe. Mater Sci Eng A 528:2118–2127. doi:10.1016/j.msea.2010.11.043

    Article  Google Scholar 

  8. Dong PS, Song SP, Zhang JM (2014) Analysis of residual stress relief mechanisms in post weld heat treatment. Int J Press Vessel Pip 122:6–14. doi:10.1016/j.ijpvp.2014.06.002

    Article  Google Scholar 

  9. Barboza MJR, Neto CM, Silva CRM (2004) Creep mechanisms and physical modelling for Ti-6Al-4V. Mater Sci Eng A 369:201–209. doi:10.1016/j.msea.2003.11.016

    Article  Google Scholar 

  10. Reis DAP, Silva CRM, Nono MCA, Barboza MJR, Neto FP, Perez EAC (2005) Effect of environment on the creep behavior of the Ti-6Al-4V alloy. Mater Sci Eng A 399:276–280. doi:10.1016/j.msea.2005.03.073

    Article  Google Scholar 

  11. Barboza MJR, Perez EAC, Medeiros MM, Reis DAP, Nono MCA, Neto FP, Silva CRM (2006) Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites. Mater Sci Eng A 428:319–326. doi:10.1016/j.msea.2006.05.089

    Article  Google Scholar 

  12. Rossini NS, Dassisti M, Benyounis KY, Olabi AG (2012) Methods of measuring residual stresses in components. Mater Des 35:572–588. doi:10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  13. Prime MB (2001) Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J Eng Mater Technol 123(2):162–168. doi:10.1115/1.1345526

    Article  Google Scholar 

  14. Prime MB, Kastengren AL (2011) The contour method cutting assumption: error minimization and correction. Exp Appl Mech 6:233–250. doi:10.1007/978-1-4419-9792-0_40

    Google Scholar 

  15. Liu C, Yi X (2013) Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method. Mater Des 46:366–371. doi:10.1016/j.matdes.2012.10.030

    Article  Google Scholar 

  16. Toparli MB, Fitzpatrick ME, Gungor S (2013) Improvement of the contour method for measurement of near-surface residual stresses from Laser peening. Exp Mech 53(9):1705–1718. doi:10.1007/s11340-013-9766-x

    Article  Google Scholar 

  17. Hosseinzadeh F, Ledgard P, Bouchard PJ (2013) Controlling the cut in contour residual stress measurements of electron beam welded Ti-6Al-4V alloy plates. Exp Mech 53(5):829–839. doi:10.1007/s11340-012-9686-1

    Article  Google Scholar 

  18. Pagliao P, Prime M, Swenson H, Zuccarello B (2010) Measuring multiple residual-stress components using the contour method and multiple cuts. Exp Mech 50(2):187–194. doi:10.1007/s11340-009-9280-3

    Article  Google Scholar 

  19. Pagliaro P, Prime M, Robinson JS, Clausen B, Swenson H, Steinzig M, Zuccarello B (2011) Measuring inaccessible residual stresses using multiple methods and superposition. Exp Mech 51(7):1123–1134. doi:10.1007/s11340-010-9424-5

    Article  Google Scholar 

  20. Prime MB, Gnaupel-Herold T, Baumann JA, Lederich RJ, Bowden DM, Sebring RJ (2006) Residual stress measurements in a thick, dissimilar aluminum-alloy friction stir weld. Acta Mater 54(15):4013–4021. doi:10.1016/j.actamat.2006.04.034

    Article  Google Scholar 

  21. Hacini L, Van LN, Bocher P (2009) Evaluation of residual stress induced by robotized hammer peening by the contour method. Exp Mech 49(6):775–783. doi:10.1007/s11340-008-9205-6

    Article  Google Scholar 

  22. Prime MB, Sebring RJ, Edwards JM, Hughes DJ, Webster PJ (2004) Laser surface-contouring and spline data-smoothing for residual stress measurement. Exp Mech 44(2):176–184. doi:10.1007/BF02428177

    Article  Google Scholar 

  23. Kartal ME (2013) Analytical solutions for determining residual stresses in two-dimensional domains using the counter method. Proc R Soc A Math Phys Eng Sci 469(2159):20130367. doi:10.1098/rspa.2013.0367

    Article  MathSciNet  Google Scholar 

  24. Kelleher J, Prime MB, Buttle D, Mummery PM, Webster PJ, Shackleton J, Withers PJ (2003) The measurement of residual stress in railway rails by diffraction and other methods. J Neutron Res 11(4):187–193

    Article  Google Scholar 

  25. Kartal M, Turski M, Johnson G, Fitzpatrick ME, Gungor S, Withers PJ, Edwards L (2006) Residual stress measurements in single and multi-pass groove weld specimens using neutron diffraction and the contour method. Mater Sci Forum 524–525:671–676. doi:10.4028/www.scientific.net/MSF.524-525.671

    Article  Google Scholar 

  26. Rangaswamy P, Prime MB, Daymond M, Bourke MAM, Clausen B, Choo H, Jayaraman N (1999) Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti-6AL-4V) matrix composite. Mater Sci Eng A 259(2):209–219. doi:10.1016/S0921-5093(98)00893-4

    Article  Google Scholar 

  27. Kohler J, Grove T, Maiβ O, Denkena B (2012). Residual stresses in milled titanium parts. Procedia CIRP. (2): 79–82. doi: 10.1016/j.procir.2012.05.044

  28. Grove T, Kohler J, Denkena B (2014). Residual stresses in Milled β-Annealed Ti6Al4V. Procedia CIRP. (13): 320–326. doi: 10.1016/j.procir.2014.04.054

  29. Zhou Z, Bhamare S, Ramakrishnan G, Mannava SR, Langer K, Wen Y, Qian D, Vasudevan VK (2012) Thermal relaxation of residual stress in laser shock peened Ti–6Al–4V alloy. Surf Coat Technol 206:4619–4627. doi:10.1016/j.surfcoat.2012.05.022

    Article  Google Scholar 

  30. Zong YY, Liu P, Guo B, Shan D (2015) Investigation on high temperature short-term creep and stress relaxation of titanium alloy. Mater Sci Eng A 620:172–180. doi:10.1016/j.msea.2014.10.015

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (50935008), the Beijing Natural Science Foundation (3142010) program, the Specialized Research Fund for the Doctoral Program of Higher Educationof China (20130002110088) and Fundings of State Key Lab of Tribology in Tsinghua University (SKLT2014A03). The authors are grateful for the helpful discussions with the valuable comments from anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Zhao, H., Wu, B. et al. Evaluation of Residual Stresses Relaxation by Post Weld Heat Treatment Using Contour Method and X-ray Diffraction Method. Exp Mech 55, 1329–1337 (2015). https://doi.org/10.1007/s11340-015-0040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0040-2

Keywords

Navigation