Skip to main content
Log in

Microplasticity in Polycrystals: A Thermomechanical Experimental Perspective

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this paper, thermomechanical couplings at the grain scale in metallic polycrystals are studied during the deformation process through an original experimental setup and improved calibration tools and full-field treatments. In order to perform intragranular thermomechanical analysis in a metallic polycrystal at the grain scale, a crystallography-based technique for the projection of the temperature and displacement fields on a polynomial basis is proposed. It enables intragranular coupled analysis of strain and temperature full-field data. Macroscopic, mesoscopic and granular analysis are then conducted and it is shown that the determination of a macroscopic yield stress as well as a critical resolved shear stress in grains is possible. Early local microplastic activity is therefore thermomechanically confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. HAGBs total length in the central area = 62.86 cm - Σ3 GBs length = 36.36 cm

References

  1. Badulescu C, Grédiac M, Haddadi H, Mathias JD, Balandraud X, Tran HS (2011) Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal. Mech Mater 43(1):36–53

    Article  Google Scholar 

  2. Barrett C (1948) Structure of metals. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  3. Berthel B (2007) Mesures thermographiques de champs de dissipation accompagnant la fatigue à grand nombre de cycles des aciers, PhD thesis, Thèse de doctorat de l’université de Montpellier II, Spécialité Mécanique, (in french), http://tel.archives-ouvertes.fr/tel-00410074/fr/

  4. Bever MB, Holt DL, Titchener AL (1973) The stored energy of cold work. Prog Mater Sci 17:5–177

    Article  Google Scholar 

  5. Boas W, Hargreaves M (1948) On the inhomogeneity of plastic deformation in the crystals of an aggregate. Proc Roy Soc A 193(1032):89–97

    Article  Google Scholar 

  6. Bodelot L, Sabatier L, Charkaluk E, Dufrénoy P (2009) Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an aisi 316l steel. Mater Sci Eng A 501(1–2):52–60

    Article  Google Scholar 

  7. Bodelot L, Charkaluk E, Sabatier L, Dufrénoy P (2011) Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by digital image correlation and infrared thermography. Mech Mater 43(11):654–670

    Article  Google Scholar 

  8. Chrysochoos A, Maisonneuve O, Martin G, Caumon H, Chezeaux J (1989) Plastic and dissipated work and stored energy. Nucl Eng Des 114(3):323–333

    Article  Google Scholar 

  9. Clarebrough LM, Hargreaves ME, West GW (1955) The release of energy during annealing of deformed metals. Proc R Soc A 232:252–270

    Article  Google Scholar 

  10. Cottrell A (1953) Dislocations and plastic flow in crystals. Clarendon Press, Oxford

    MATH  Google Scholar 

  11. Farren WS, Taylor GI (1925) The heat developed during plastic extension of metals. Proc R Soc London Ser A, Containing Pap Math Phys Charact 107(743):422–451

    Article  Google Scholar 

  12. Feaugas X, Pilvin P (2009) A polycrystalline approach to the cyclic behaviour of fcc alloys: intra-granular heterogeneity. Adv Eng Mater 11(9):703–709

    Article  Google Scholar 

  13. Hild F, Roux S (2008) Correlli Q4: A software for ”Finite-element” displacement field measurements by digital image correlation, internal report 269. Tech. rep., LMT Cachan, ENS Cachan, France

  14. Hodowany J, Ravichandran G, Rosakis A, Rosakis P (2000) Partition of plastic work into heat and stored energy in metals. Exp Mech 40:113–123

    Article  Google Scholar 

  15. Kelly A, Knowles K (2012) Crystallography and crystal defects. Wiley

  16. Lee H, Chen J (1991) Temperature effect induced by uniaxial tensile loading. J Mater Sci 26(21):5685–5692

    Article  Google Scholar 

  17. Macdougall D (2000) Determination of the plastic work converted to heat using radiometry. Exp Mech 40:298–306

    Article  Google Scholar 

  18. Michno M, Findley W (1976) An historical perspective of yield surface investigations for metals. Int J Non-Linear Mech 11(1):59–82

    Article  MATH  Google Scholar 

  19. Nan C, Birringer R (1998) Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model. Phys Rev B 57(14):8264–8268

    Article  Google Scholar 

  20. Oliferuk W, Swiatnicki W A, Grabski MW (1993) Rate of energy storage and microstructure evolution during the tensile deformation of austenitic steel. Mater Sci Eng: A 161(1):55–63

    Article  Google Scholar 

  21. Oliferuk W, Swiatnicki WA, Grabski MW (1995) Effect of the grain size on the rate of energy storage during the tensile deformation of an austenitic steel. Mater Sci Eng A 197(1):49–58

    Article  Google Scholar 

  22. Pron H, Bissieux C (2004) Focal plane array infrared cameras as research tools. QIRT J 1(2):229–240

    Article  Google Scholar 

  23. Quinney H, Taylor GI (1937) The emission of the latent energy due to previous cold working when a metal is heated. Proc R Soc Lond Ser A Math Phys Sci 163(913):157–181

    Article  Google Scholar 

  24. Saai A, Louche H, Tabourot L, Chang H (2010) Experimental and numerical study of the thermo-mechanical behavior of al bi-crystal in tension using full field measurements and micromechanical modeling. Mech Mater 42(3):275–292

    Article  Google Scholar 

  25. Sachs G (1928) Zur ableitung einer fliessbedingung. Z Ver Dtsch Ing 72:734–736

    Google Scholar 

  26. Schmid E (1924) Yield point of a crystals: critical shear stress law. In: Proc. 1st Int. Congr. Appl. Mech., Delft, Neetherland, pp 342

  27. Seghir R, Bodelot L, Charkaluk E, Dufrénoy P (2012) Numerical and experimental estimation of thermomechanical fields heterogeneity at the grain scale of 316L stainless steel. Comp Mat Sci 53(1):464–473

    Article  Google Scholar 

  28. Seghir R, Witz J, Bodelot L, Charkaluk E, Dufrénoy P (2013a) Determination of microstructural lagrangian thermal field within polycrystals. QIRT journal Accepted

  29. Seghir R, Witz J, Charkaluk E, Dufrénoy P (2013b) Improvement of thermomechanical full-field analysis of metallic polycrystals by crystallographic informations. Meca Ind Accepted

  30. Taylor GI (1938) Plastic strains in metals. J Inst Metals 62:307

    Google Scholar 

  31. Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc Lond Ser A 143(849):307–326

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Patrick Villechaise at the Institut Pprime - UPR 3346 (ENSMA, Poitiers, France) for the EBSD analysis and fruitful discussions during this study.

The present research work has been supported by International Campus on Safety and Intermodality in Transportation (CISIT) the Nord-Pas-de-Calais Region, the European Community, the Ministry of Higher Education and Research, and the National Center for Scientific Research. The authors gratefully acknowledge the support of these institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Charkaluk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkaluk, E., Seghir, R., Bodelot, L. et al. Microplasticity in Polycrystals: A Thermomechanical Experimental Perspective. Exp Mech 55, 741–752 (2015). https://doi.org/10.1007/s11340-014-9921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9921-z

Keywords

Navigation