Skip to main content
Log in

Application of Digital Image Correlation (DIC) in Dynamic Notched Semi-Circular Bend (NSCB) Tests

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Notched semi-circular bend (NSCB) specimen has been successfully used in fracture tests of brittle materials. As a suggested method for measuring the dynamic fracture toughness of rocks by the International Society for Rock Mechanics (ISRM), this method only measures the fracture initiation toughness of the sample with given external load and geometrical parameters. Using the digital image correlation (DIC) method combined with ultra-high speed photography, the objective of this paper is to measure more fracture parameters of the NSCB specimen loaded by a split Hopkinson pressure bar (SHPB) system. The displacement and strain fields during the fracture propagation process were determined using DIC method. The location of the crack tip, the fracture initiation toughness and the fracture propagation toughness were subsequently calculated using the deformation fields. Compared with the traditional NSCB tests, the optical method of DIC provides much more information on the fracture propagation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chong KP, Kuruppu MD (1984) New specimen for fracture-toughness determination for rock and other materials. Int J Fract 26(2):R59–R62. doi:10.1007/Bf01157555

    Article  Google Scholar 

  2. Kuruppu MD, Chong KP (2012) Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Eng Fract Mech 91(0):133–150. doi:10.1016/j.engfracmech.2012.01.013

    Article  Google Scholar 

  3. Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1—mode I. Int J Rock Mech Min Sci Geomech Abstr 31(3):185–197. doi:10.1016/0148-9062(94)90463-4

    Article  Google Scholar 

  4. Dai F, Chen R, Xia K (2010) A semi-circular bend technique for determining dynamic fracture toughness. Exp Mech 50(6):783–791. doi:10.1007/s11340-009-9273-2

    Article  Google Scholar 

  5. Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1–2):79–97. doi:10.1016/S0013-7952(02)00033-9

    Article  Google Scholar 

  6. Ayatollahi MR, Aliha MRM (2007) Fracture toughness study for a brittle rock subjected to mixed mode I/II loading. Int J Rock Mech Min Sci 44(4):617–624. doi:10.1016/j.ijrmms.2006.10.001

    Article  Google Scholar 

  7. Zhou YX, Xia K, Li XB et al (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112. doi:10.1016/j.ijrmms.2011.10.004

    Article  Google Scholar 

  8. Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25(4):247–262. doi:10.1007/BF00963460

    Article  Google Scholar 

  9. Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154. doi:10.1007/BF01157550

    Article  Google Scholar 

  10. Shukla A, Nigam H (1986) A note on the stress intensity factor and crack velocity relationship for homalite-100. Eng Fract Mech 25(1):91–102. doi:10.1016/0013-7944(86)90206-7

    Article  Google Scholar 

  11. Dally JW, Sanford RJ (1987) Strain-gage methods for measuring the opening-mode stress-intensity factor, Ki. Exp Mech 27(4):381–388. doi:10.1007/Bf02330311

    Article  Google Scholar 

  12. Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets. Int J Fract 90(1–2):153–174. doi:10.1023/A:1007439301360

    Article  Google Scholar 

  13. Bertram A, Kalthoff JF (2003) Crack propagation toughness of rock for the range of low to very high crack speeds. Key Eng Mater 251–252:423–430. doi:10.4028/www.scientific.net/KEM.251-252.423

    Article  Google Scholar 

  14. Dai F, Xia K, Zheng H, Wang YX (2011) Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech 78(15):2633–2644. doi:10.1016/j.engfracmech.2011.06.022

    Article  Google Scholar 

  15. Dai F, Chen R, Iqbal MJ, Xia K (2010) Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int J Rock Mech Min Sci 47(4):606–613. doi:10.1016/j.ijrmms.2010.04.002

    Article  Google Scholar 

  16. Chen R, Xia K, Dai F, Lu F, Luo SN (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76(9):1268–1276. doi:10.1016/j.engfracmech.2009.02.001

    Article  Google Scholar 

  17. Corr D, Accardi M, Graham-Brady L, Shah S (2007) Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete. Eng Fract Mech 74(1–2):109–121. doi:10.1016/j.engfracmech.2006.01.035

    Article  Google Scholar 

  18. Pan B, Wu DF, Xia Y (2010) High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Opt Lasers Eng 48(9):841–848. doi:10.1016/j.optlaseng.2010.04.007

    Article  Google Scholar 

  19. Jajam KC, Tippur HV (2012) Quasi-static and dynamic fracture behavior of particulate polymer composites: a study of nano- vs. micro-size filler and loading-rate effects. Compos Part B Eng 43(8):3467–3481. doi:10.1016/j.compositesb.2012.01.042

    Article  Google Scholar 

  20. Zhao Y, Ma S (2009) Deformation field around the stress induced crack area in sandstone by the digital speckle correlation method. Acta Geol Sin-Engl 83(3):661–672. doi:10.1111/j.1755-6724.2009.00061.x

    Article  Google Scholar 

  21. Lee D, Tippur H, Bogert P (2012) Dynamic fracture of graphite/epoxy composites stiffened by buffer strips: an experimental study. Compos Struct 94(12):3538–3545. doi:10.1016/j.compstruct.2012.05.032

    Article  Google Scholar 

  22. McNeill SR, Peters WH, Sutton MA (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28(1):101–112. doi:10.1016/0013-7944(87)90124-X

    Article  Google Scholar 

  23. Zhang R, He L (2012) Measurement of mixed-mode stress intensity factors using digital image correlation method. Opt Lasers Eng 50(7):1001–1007. doi:10.1016/j.optlaseng.2012.01.009

    Article  Google Scholar 

  24. Durif E, Fregonese M, Rethore J, Combescure A (2010) Development of a digital image correlation controlled fatigue crack propagation experiment. EPJ Web Conf 6:31012. doi:10.1051/epjconf/20100631012

    Article  Google Scholar 

  25. Lin Q, Labuz JF (2013) Fracture of sandstone characterized by digital image correlation. Int J Rock Mech Min Sci 60:235–245. doi:10.1016/j.ijrmms.2012.12.043

    Google Scholar 

  26. Kirugulige MS, Tippur HV, Denney TS (2007) Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture. Appl Opt 46(22):5083–5096. doi:10.1364/Ao.46.005083

    Article  Google Scholar 

  27. Kirugulige MS, Tippur HV (2009) Measurement of fracture parameters for a mixed-mode crack driven by stress waves using digital image correlation technique and high-speed digital photography. Strain 45(2):108–122. doi:10.1111/j.1475-1305.2008.00449.x

    Article  Google Scholar 

  28. Zhou ZB, Chen PW, Huang FL (2012) Study on dynamic fracture and mechanical properties of a PBX simulant by using DIC and SHPB method. AIP Conf Proc 1426:665–668. doi:10.1063/1.3686366

    Article  Google Scholar 

  29. Réthoré J, Gravouil A, Morestin F, Combescure A (2005) Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral. Int J Fract 132(1):65–79. doi:10.1007/s10704-004-8141-4

    Article  Google Scholar 

  30. Yoneyama S, Morimoto Y, Takashi M (2006) Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain 42(1):21–29. doi:10.1111/j.1475-1305.2006.00246.x

    Article  Google Scholar 

  31. Mathieu F, Hild F, Roux S (2012) Identification of a crack propagation law by digital image correlation. Int J Fatigue 36(1):146–154. doi:10.1016/j.ijfatigue.2011.08.004

    Article  Google Scholar 

  32. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1–4):141–157. doi:10.1007/s10704-006-6631-2

    Article  MATH  Google Scholar 

  33. Pan B, Qian KM, Xie HM, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):1–17. doi:10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  34. Nishioka T, Atluri SN (1983) Path independent integrals energy release rate and general solutions of near-crack- tip field in mixed -mode dynamic fracture mechanics. Eng Fract Mech 18(1):1–22. doi:10.1016/0013-7944(87)90124-X

    Article  Google Scholar 

  35. Deng X (1993) Transient, asymptotic, elastodynamic analysis a simple method and its application to mixed-mode crack growth. Int J Solids Struct 30(4):513–519. doi:10.1016/0020-7683(93)90184-9

    Article  MATH  Google Scholar 

  36. Yang L, Deng X, Chao YJ (1994) Explicit expressions of transient elastodynamic crack tip fields for mixed-mode crack propagation. Eng Fract Mech 48(4):573–582. doi:10.1016/0013-7944(94)90213-5

    Article  Google Scholar 

  37. Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York. doi:10.1007/978-0-387-78747-3

    Google Scholar 

  38. Sutton MA, Li N, Garcia D et al (2007) Scanning electron microscopy for quantitative small and large deformation measurements part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47(6):789–804. doi:10.1007/s11340-007-9041-0

    Article  Google Scholar 

  39. Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48(4):469–477. doi:10.1016/j.optlaseng.2009.08.010

    Article  Google Scholar 

  40. Bakhtazad A, Palazoglu A, Romagnoli JA (1999) Process data de-noising using wavelet transform. Intell Data Anal 3(4):267–285. doi:10.1016/S1088-467X(99)00023-2

    Article  MATH  Google Scholar 

  41. Coifman RR, Donoho DL (1995) Translation-invariant de-noising. In: Antoniadis A, Oppenheim G (eds) Wavelets and statistics. Springer, New York, pp 125–150. doi:10.1007/978-1-4612-2544-7_9

    Chapter  Google Scholar 

  42. ASTM Standard E399-12 (2012) Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. ASTM Int. doi:10.1520/e0399-12

    Google Scholar 

  43. Gao H (1997) Elastic waves in a hyperelastic solid near its plane-strain equibiaxial cohesive limit. Philos Mag Lett 76(5):307–314. doi:10.1080/095008397178896

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China under Grant # 2010CB731503 and Grant # 2013CB035904. K. Xia’s research was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grant # 72031326. G. Gao was financially supported by the China Scholarship Council (No. 201206010226) during her visit at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, G., Huang, S., Xia, K. et al. Application of Digital Image Correlation (DIC) in Dynamic Notched Semi-Circular Bend (NSCB) Tests. Exp Mech 55, 95–104 (2015). https://doi.org/10.1007/s11340-014-9863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9863-5

Keywords

Navigation