Skip to main content
Log in

New Understanding of the Influence of the Pre-Training Phase Transformation Behaviour on the TWSME in NiTi SMA Wires

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Changes in the phase transformation behaviour in two-way shape memory NiTi wires were quantified by X-ray diffraction as a function of temperature. The results were compared with those obtained from the electrical resistivity measurements and applied loading method. The weight fraction diagrams enable us to observe that the higher is the level of the R-phase in the pre-training path of the NiTi sample, the lower will be the two-way memory strain obtained. Substantial values of two-way memory strain were found to be associated with pre-training paths characterized by simultaneous transformation of austenite to R-phase plus martensite. Finally, a comparison of these three experimental techniques led to a new interpretation of the electrical resistivity curves for obtaining the transformation temperatures of two-way shape memory NiTi wires. This may help to clarify the relationship between the shape of the electrical resistivity curve and the two-way memory strain that occurs in the NiTi sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Humbeeck JV (2001) Shape memory alloys: a material and a technology. Adv Eng Mater 3(11):837–850. doi:10.1002/1527-2648

    Article  Google Scholar 

  2. Otsuka K, Kakeshita T (2002) Science and technology of shape-memory alloys: new developments. MRS Bull 27:91–100. doi:10.1557/mrs2002.43

    Article  Google Scholar 

  3. Zhang XM, Fernandez J, Guilemany JM (2006) Role of external applied stress on the two-way shape memory effect. Mater Sci Eng, A 438–440:431–435. doi:10.1016/j.msea.2006.02.093

    Article  Google Scholar 

  4. Luo HY, Abel EW (2007) A comparison of methods for the training of Ni-Ti two-way shape memory alloy. Smart Mater Struc 16:2543–2549. doi:10.1088/0964-1726/16/6/058

    Article  Google Scholar 

  5. Ling HC, Kaplow R (1980) Phase transitions and shape memory in NiTi. Metall Trans A 11A:2101–2111. doi:10.1007/BF02700440

    Google Scholar 

  6. Pozzi M, Airoldi G (1999) The electrical transport properties of shape memory alloys. Mater Sci Eng, A 273–275:300–304. doi:10.1016/S0921-5093(99)00359-7

    Article  Google Scholar 

  7. Wu XD, Fan YZ, Wu JS (2000) A study on the variations of the electrical resistance for Ni-Ti shape memory alloy wires during the thermo-mechanical loading. Mater Des 21:511–515. doi:10.1016/S0261-3069(00)00022-4

    Article  Google Scholar 

  8. Prahlad H, Chopra I (1999) Experimental characterization of Ni-Ti shape memory alloy wires under complex loading conditions. Proc SPIE 3668:694–14. doi:10.1117/12.350736

    Google Scholar 

  9. Abel E, Luo H, Pridham M, Slade A (2001) Issues concerning the measurement of transformation temperatures of NiTi alloys. Smart Mater Struc 13:1110–1117. doi:10.1088/0964-1726/13/5/016

    Article  Google Scholar 

  10. Li DY, Wu F, Ko T (1991) The effect of stress on soft modes for the phase transformation in a Ti-Ni alloy II. Effects of ageing and thermal cycling on the phase transformation. Philos Mag A 63(3):603–616. doi:10.1080/01418619108213902

    Article  Google Scholar 

  11. Uchil J, Mahesh KK, Kumara G (2002) Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy. Physica B 324:419–428. doi:10.1016/S0921-4526(02)01462-X

    Article  Google Scholar 

  12. Novak V et al (2008) Electric resistance variaton of NiTi shape memory alloy wires in thermomechanical tests: experiments and simulations. Mater Sci Eng, A 481–482:127–133. doi:10.1016/j.msea.2007.02.162

    Article  Google Scholar 

  13. De la Flor S, Urbina C, Ferrando F (2009) Effect of mechanical cycling on stabilizing the transfromation behaviour of NiTi shape memory alloys. J Alloys Compd 469(1–2):343–349. doi:10.1016/j.msea.2008.10.026

    Article  Google Scholar 

  14. Liu Y, Xie Z, Humbeeck JV (1999) Cyclic deformation of NiTi SMA. Mater Sci Eng, A 273–275:134–138. doi:10.1016/S0921-5093(99)00347-0

    Google Scholar 

  15. Miyazaki S, Kimura S, Otsuka K (1988) Memory effect and pseudoelasticity associated with R-phase transition in Ti50.5 at% Ni single crystals. Philos Mag A 57:467–478

    Article  Google Scholar 

  16. Morgan NB, Friend CM (2001) A review of shape memory stability in NiTi alloys. J Phys IV 11:325–332. doi:10.1051/jp4:2001855

    Google Scholar 

  17. Liu Y, McCormick PG (1990) Two way shape memory effect in NiTi. Mater Sci Forum 56:585–590. doi:10.4028/www.scientific.net/MSF.56-58.585

    Article  Google Scholar 

  18. Lahoz R, Garcia-Villa L, Puertolas JA (2004) Training and two-way shape memory in NiTi alloys: influence on thermal parameters. J Alloy Compd 381:130–136. doi:10.1016/j.jallcom.2004.03.080

    Article  Google Scholar 

  19. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni based shape memory alloys. Progress Mater Sci 50:511–678. doi:10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  20. Todoroki T, Tamura H, Suzuki Y (1987) Variable temperature stress-induced martensitic transformation training of Ti-Ni alloy. Proc Int Conf Marten Trans ICOMAT 86:748–753

    Google Scholar 

  21. Filip P, Mazanec K (2001) Investigation of physical metallurgy characteristics of the two-way shape memory effect in TiNi alloys. Metall Mater 39(1):23–28

    Google Scholar 

  22. Gyobu A, Kawamura Y, Horikawa H, Saburi T (2001) Two-way shape memory effect of sputter-deposited Ti-rich Ti–Ni alloy films. Mater Sci Eng, A 312(1–2):227–231. doi:10.1016/S0921-5093(00)01888-8

    Article  Google Scholar 

  23. Tomozawa M, Kim HY, Miyazaki S (2006) Micro actuators using R-phase transformation of sputter-deposited Ti-47.3Ni Shape memory alloy thin film. J Intell Mater Syst Struc 17:1049–1058. doi:10.1177/1045389X06064883

    Article  Google Scholar 

  24. Uchil J, Mohanchandra KP, Kumara KG, Mahesh KK (1998) Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe. Mater Sci Eng, A 251:58–63. doi:10.1016/S0921-5093(98)00636-4

    Article  Google Scholar 

  25. Urbina C, De la Flor S, Gispert-Guirado F, Ferrando F (2010) Quantitative XRD analysis of the evolution of the TiNi phase transformation behavior in relation to thermal treatment. Intermetallics 18(8):1632–1641. doi:10.1016/j.intermet.2010.04.020

    Article  Google Scholar 

  26. Urbina C, De la Flor S, Ferrando F (2009) Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys. Mater Sci Eng, A 501:197–206. doi:10.1016/j.msea.2008.10.026

    Article  Google Scholar 

  27. Urbina C, De la Flor S, Ferrando F (2010) R-phase influence on different two-way shape memory training methods in NiTi shape memory alloys. J Alloys Compd 490:499–507. doi:10.1016/j.jallcom.2009.10.067

    Article  Google Scholar 

  28. Urbina C, De la Flor S, Gispert-Guirado F, Ferrando F (2012) New interpretation of the electrical resistivity measurements for obtaining NiTi SMA stress-free transformation temperatures. Proc ASME ESDA 4:539–546

    Google Scholar 

  29. Hodgson DE, Wu MH, Biermann RJ (1999) Shape memory alloys. In: ASM handbook committee properties and selection: nonferrous alloys and special-purpose materials, 1st edn. ASM International, Ohio, pp 897–902

    Google Scholar 

  30. Stinton G, Evans J (2007) Parametric rietveld refinement. J Appl Crystall 40:87–95. doi:10.1107/S0021889806043275

    Article  Google Scholar 

  31. TOPAS V3.1 (2005) General profile and structure analysis software for powder diffraction data. Bruker AXS Karlsruhe. Bruker AXS, Germany

    Google Scholar 

  32. Uchil J, Mohanchandra KP, Kumara KG, Mahesh KK, Murali TP (1999) Thermal expansion in various phases of Nitinol using TMA. Physica B 270:289–297. doi:10.1016/S0921-4526(99)00186-6

    Article  Google Scholar 

  33. Stokes AR, Wilson AJC (1942) A method of calculating the integral breadths of Debye-Scherrer lines. Math Proc Camb Philos Soc 38:313–322. doi:10.1017/S0305004100021988

    Article  Google Scholar 

  34. March A, Krist Z (1932) Mathematische theorie der regelung nach der korngestalt bei affiner deformation. Z Kristall 81:285–297

    MATH  Google Scholar 

  35. Dwight AE (1959) CsCI-type equiatomic phases in binary alloys of transition element. Trans AIME 215:283–286

    Google Scholar 

  36. Kudoh Y, Tokonami M, Miyazaki S, Otsuka K (1985) Crystal structure of the martensite in Ti – 49.2 at% Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metall 33:2049–2056. doi:10.1016/0001-6160(85)90128-2

    Article  Google Scholar 

  37. Wu SK, Lin HC (2006) Electrical resistivity of Ti–Ni binary and Ti–Ni–X (X = Fe, Cu) ternary shape memory alloys. Mater Sci Eng, A 438–440:536–539. doi:10.1016/j.msea.2005.12.059

    Article  Google Scholar 

  38. Pelosin V, Riviere A (1998) Effect of thermal cycling on the R-phase and martensitic transformations in a Ti-rich NiTi alloy. Metall Mater Trans A 29(4):1175–1180. doi:10.1007/s11661-998-0244-5

    Article  Google Scholar 

  39. Matsumoto H (1992) Electrical resistivity of NiTi with a high transformation temperature. J Mater Sci Letts 11:367–368. doi:10.1007/BF00729185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Urbina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbina, C., De la Flor, S., Gispert-Guirado, F. et al. New Understanding of the Influence of the Pre-Training Phase Transformation Behaviour on the TWSME in NiTi SMA Wires. Exp Mech 53, 1415–1436 (2013). https://doi.org/10.1007/s11340-013-9756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9756-z

Keywords

Navigation