Skip to main content
Log in

Direct Measurement of the Cohesive Law of Adhesives Using a Rigid Double Cantilever Beam Technique

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Engineering adhesive joints are being increasingly used in industry because of the advantages they offer over other joining methods such as fastening or welding. The development and the use of adhesives in a design environment require accurate mechanical tests in order to measure their strength and toughness. Standard techniques such as the shear lap test are commonly used to measure shear strength, but the results they produce generally depend on geometry and on initial defects within the bond line. Fracture tests such as the double cantilever beam (DCB) tests overcome these limitations, but rely on elasticity models and assumptions to determine toughness. In this study, we present a novel technique to directly determine the mode I fracture toughness of engineering adhesive joints as well as their full cohesive law, without any initial assumption on its shape. Our new method is remarkably simple in terms of experimental setup, execution and analysis. It is similar to the standard double cantilever beam (DCB) test with the difference that the material and dimensions of the beams are chosen so that they are assumed to be rigid compared to the bond line. In this rigid DCB (RDCB) technique the crack opening is known everywhere along the interface, which we use to compute the cohesive law of the adhesive directly from the load-displacement data obtained from experiment and the geometry of the RDCB specimen. The RDCB method is validated and applied to three typical commercial adhesives (polyurethane, epoxy, and silicone), to determine their cohesive law and fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams R, Comyn J, Wake W (1997) Structural adhesive joints in engineering. Chapman and Hall, London

  2. Dunn DJ (2004) Engineering and structural adhesives. Rapra Rev Rep 15(1):1–28

    Google Scholar 

  3. ASTM (1986) ASTM D 3983: standard test method for measuring strength and shear modulus of nonrigid adhesives by the thick-adherend tensile-lap specimen. West Conshohocken, PA

  4. Ripling EJ, Mostovoy S, Corten HT (1971) Fracture mechanics: a tool for evaluating structural adhesives. J Adhes 3(2):107–123

    Article  Google Scholar 

  5. Dastjerdi AK, Pagano M, Kaartinen MT, McKee MD, Barthelat F (2012) Cohesive behavior of soft biological adhesives: experiments and modeling. Acta Biomater 8(9):3349–3359. doi:10.1016/j.actbio.2012.05.005

    Article  Google Scholar 

  6. Dannenberg H (1961) Measurement of adhesion by a blister method. J Appl Polym Sci 5(14):125–134. doi:10.1002/app.1961.070051401

    Article  Google Scholar 

  7. Chicot D, Démarécaux P, Lesage J (1996) Apparent interface toughness of substrate and coating couples from indentation tests. Thin Solid Films 283(1-2):151–157. doi:10.1016/0040-6090(96)08763-9

    Article  Google Scholar 

  8. Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, Cambridge, United Kingdom

  9. ASTM (2012) ASTM D3433 - 99: standard test method for fracture strength in cleavage of adhesives in bonded metal joints. West Conshohocken, PA

  10. Anderson TL (1995) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton, FL

  11. Andersson T (2006) On the effective constitutive properties of a thin adhesive layer loaded in peel. Int J Fract 141(1–2):227

    Article  Google Scholar 

  12. de Moura M (2012) A straightforward method to obtain the cohesive laws of bonded joints under mode I loading. Int J Adhes Adhes 39:54

    Article  Google Scholar 

  13. Biel A (2010) Damage and plasticity in adhesive layer: an experimental study. Int J Fract 165(1):93

    Article  Google Scholar 

  14. Sørensen BF (2003) Determination of cohesive laws by the J integral approach. Eng Fract Mech 70(14):1841

    Article  Google Scholar 

  15. Carlberger T, Stigh U (2010) Influence of layer thickness on cohesive properties of an epoxy-based adhesive—an experimental study. J Adhes 86(8):816–835

    Article  Google Scholar 

  16. Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces. Int J Solids Struct 46(1):31–51

    Article  Google Scholar 

  17. Shet C, Chandra N (2002) Analysis of energy balance when using cohesive zone models to simulate fracture processes. J Eng Mater Technol Trans ASME 124(4):440–450. doi:10.1115/1.1494093

    Article  Google Scholar 

  18. Bouvard JL, Chaboche JL, Feyel F, Gallerneau F (2009) A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys. Int J Fatigue 31(5):868–879. doi:10.1016/j.ijfatigue.2008.11.002

    Article  Google Scholar 

  19. Aymerich F, Dore F, Priolo P (2009) Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements. Compos Sci Technol 69(11–12):1699–1709. doi:10.1016/j.compscitech.2008.10.025

    Article  Google Scholar 

  20. Hutchinson JW, Evans AG (2000) Mechanics of materials: top-down approaches to fracture. Acta Mater 48(1):125–135. doi:10.1016/s1359-6454(99)00291-8

    Article  Google Scholar 

  21. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55(2):306–337. doi:10.1016/j.jmps.2006.07.007

    Article  Google Scholar 

  22. Sørensen BF (2002) Cohesive law and notch sensitivity of adhesive joints. Acta Mater 50(5):1053

    Article  Google Scholar 

  23. Andersson T (2004) The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int J Solids Struct 41(2):413

    Article  Google Scholar 

  24. Han J, Siegmund T (2012) Cohesive zone model characterization of the adhesive hysol EA-9394. J Adhes Sci Technol 26(8–9):1033–1052

    Google Scholar 

  25. de Moura MFSF, Morais JJL, Dourado N (2008) A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Eng Fract Mech 75(13):3852

    Article  Google Scholar 

  26. Sun C, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2008) Ductile–brittle transitions in the fracture of plastically-deforming, adhesively-bonded structures. Part I: Experimental studies. Int J Solids Struct 45(10):3059–3073. doi:10.1016/j.ijsolstr.2008.01.011

    Article  MATH  Google Scholar 

  27. Sun C, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2008) Ductile–brittle transitions in the fracture of plastically deforming, adhesively bonded structures. Part II: Numerical studies. Int J Solids Struct 45(17):4725–4738. doi:10.1016/j.ijsolstr.2008.04.007

    Article  MATH  Google Scholar 

  28. Timoshenko S (1940) Strength of materials. Part 1: Elementary theory and problems, 2nd edn. D. Van Nostrand Company Inc., New York

  29. Tvergaard V, Hutchinson JW (1994) Toughness of an interface along a thin ductile layer joining elastic solids. Philos Mag A 70(4):641–656

    Article  Google Scholar 

  30. Högberg JL, Sørensen BF, Stigh U (2007) Constitutive behaviour of mixed mode loaded adhesive layer. Int J Solids Struct 44(25–26):8335–8354. doi:10.1016/j.ijsolstr.2007.06.014

    Article  MATH  Google Scholar 

  31. Marzi S, Hesebeck O, Brede M, Kleiner F (2009) A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I. J Adhes Sci Technol 23(6):881–898. doi:10.1163/156856109x411238

    Article  Google Scholar 

  32. Khoramishad H, Crocombe AD, Katnam KB, Ashcroft IA (2010) Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. Int J Fatigue 32(7):1146–1158. doi:10.1016/j.ijfatigue.2009.12.013

    Article  Google Scholar 

  33. Xu C, Siegmund T, Ramani K (2003) Rate-dependent crack growth in adhesives II. Experiments and analysis. Int J Adhes Adhes 23(1):15–22. doi:10.1016/S0143-7496(02)00063-5

    Article  Google Scholar 

  34. Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction–separation laws for polyurea/steel interfaces. Int J Solids Struct 46(1):31–51. doi:10.1016/j.ijsolstr.2008.08.019

    Article  Google Scholar 

  35. Meng Q, Zaman I, Hannam JR, Kapota S, Luong L, Youssf O, Ma J (2011) Improvement of adhesive toughness measurement. Polym Test 30(2):243–250. doi:10.1016/j.polymertesting.2011.01.001

    Article  Google Scholar 

  36. Banea MD, da Silva LFM, Campilho RDSG (2010) Temperature dependence of the fracture toughness of adhesively bonded joints. J Adhes Sci Technol 24(11–12):2011–2026. doi:10.1163/016942410x507713

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. AKD was partially supported by a McGill Engineering Doctoral Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Barthelat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khayer Dastjerdi, A., Tan, E. & Barthelat, F. Direct Measurement of the Cohesive Law of Adhesives Using a Rigid Double Cantilever Beam Technique. Exp Mech 53, 1763–1772 (2013). https://doi.org/10.1007/s11340-013-9755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9755-0

Keywords

Navigation