Skip to main content
Log in

Comparing Two Damage Models Under Shear Stress

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Recently, a new macro-mechanical model for ductile damage was presented by Wierzbicki, Xue et al., trying to address the role assumed by Lode angle and pressure sensitivity. The new model requires several experimental tests to identify all its parameters, but should outperform the “standard” formulations at high triaxiality levels. In this work a comparison between the Lemaitre’s Continuous Damage Mechanics model and the Wierzbicki’s one is proposed. After calibration of both models, the displacement field measured using the Digital Image Correlation technique in a large shear test case is compared with results of Finite Element simulations obtained using the two damage models considered. Results are not conclusive but show that the new damage model is quite accurateas rupture criterion, but damage evolution history deviates to some extent from the experimentally observed behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Note that the authors of the damage model also propose a second formulation using directly the Lode angle that is not used in this work.

  2. Low cycle fatigue data was extracted from material data sheet, i.e. 281 and 264 MPa respectively at 3,000 and 5,000 cycles.

  3. Note that the same location is predicted even when \(\beta =2\).

References

  1. Krajcinovic D (1998) Selection of damage parameter-art or science? Mech Mater 28(1–4):165–179

    Article  Google Scholar 

  2. Krajcinovic D, Mastilovic S (1995) Some fundamental issues of damage mechanics. Mech Mater 21(3):217–230

    Article  Google Scholar 

  3. Lemaitre J, Desmorat R, Sauzay M (2000) Anisotropic damage law of evolution. Eur J Mech–A/Solids 19(2):187–208

    Article  MATH  Google Scholar 

  4. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth. J Eng Mater Technol 17(99):2–15

    Article  Google Scholar 

  5. Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A/Solids 27(1):1–17

    Article  MATH  Google Scholar 

  6. Tvergaard V (1989) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151

    Article  Google Scholar 

  7. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 10(32):157–169

    Google Scholar 

  8. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107(2):83–89

    Article  Google Scholar 

  9. Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Lemaitre J, Dufailly J (1987) Damage measurements. Eng Fract Mech 28(5):643–661

    Article  Google Scholar 

  11. Voyiadjis GZ (2001) Model of inelastic behavior coupled to damage, chap 9, section 9.4. Academic Press, New York, pp 814–820

    Google Scholar 

  12. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24(6):1071–1096

    Article  MATH  Google Scholar 

  13. Xue L (2007) Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct 44(16):5163–5181

    Article  MATH  Google Scholar 

  14. Xue L (2009) Stress based fracture envelope for damage plastic solids. Eng Fract Mech 76(3):419–438

    Article  Google Scholar 

  15. Xue L, Wierzbicki T (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75(11):3276–3293

    Article  Google Scholar 

  16. Voyiadjis GZ, Abed FH (2006) Implicit algorithm for finite deformation hypoelastic-viscoplasticity in fcc metals. Int J Numer Methods Eng 67(7):933–959

    Article  MATH  Google Scholar 

  17. Xue L, Wierzbicki T (2009) Ductile fracture characterization of aluminum alloy 2024-t351 using damage plasticity theory. Int J Appl Mech 1(2):267–304

    Article  Google Scholar 

  18. Xue L (2007) Ductile fracture modeling: theory, experimental investigation and numerical verification. PhD thesis, Massachusetts Institute of Technology

  19. Bonora N, Newaz G (1998) Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model. Int J Solids Struct 35(16):1881–1894

    Article  MATH  Google Scholar 

  20. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98

    Article  Google Scholar 

  21. Wierzbicki T, Bao Y, Lee YW, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47(4–5):719–743

    Article  Google Scholar 

  22. Lode W (1925) Versuche über den einfluß der mittleren hauptspannung auf die fließgrenze. Z Angew Math Mech 5:142–144

    Google Scholar 

  23. Zhang KS, Bai JB, Francois D (2001) Numerical analysis of the influence of the Lode parameter on void growth. Int J Solids Struct 38(32–33):5847–5856

    Article  MATH  Google Scholar 

  24. Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill, New York

    MATH  Google Scholar 

  25. Coffin LF (1954) A study of the effect of cyclic thermal stresses on a ductile metal. Trans ASME 76:931–950

    Google Scholar 

  26. Manson SS (1965) Fatigue: a complex subject–some simple approximation. Exp Mech 5:193–226

    Article  Google Scholar 

  27. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12(3):159–164

    Google Scholar 

  28. Palmgren A (1924) Die lebensdauer von kugellagern. Z Ver Dtsch Ing 68(14):339–341

    Google Scholar 

  29. Lemaitre J, Dufailly J (1977) Modélisation et identification de l’endommagement plastique des métaux. In: 3-éme Congrés Française de Mécanique. Grenoble, France

  30. Chaboche JL (1977) Sur l’utilisation des variables d’état interne pour la description de la viscoplasticité cyclique avec endommagement. In: Problèmes Non Linéaires de Mécanique, Symposium Franco-Polonais de Rhéologie et Mécanique, Cracow, pp 137–159

  31. Lemaitre J (2001) Handbook of materials behavior models. Academic Press, New York

    Google Scholar 

  32. Lemaitre J, Desmorat R (2005) Engineering damage mechanics—suctile, creep, fatigue and brittle failures. Springer-Verlag, Berlin

    Google Scholar 

  33. Baldi A, Bertolino F, Ginesu F (2006) Analisi di un nuovo codice per la correlazione digitale di immagini basato sul principio degli elementi finiti. In: XXXV Convegno Nazionale AIAS—Ancona settembre 2006, pp 1–10

  34. Roux S, Hild F (2008) Digital image mechanical identification (DIMI). ExpMech 48(4):495–508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, A., Francesconi, L., Medda, A. et al. Comparing Two Damage Models Under Shear Stress. Exp Mech 53, 1105–1116 (2013). https://doi.org/10.1007/s11340-013-9715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9715-8

Keywords

Navigation