Skip to main content

Advertisement

Log in

Bulge Testing Transparent Thin Films with Moiré Deflectometry

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The problem that is addressed here is the measurement of the mechanical properties of very thin, transparent films using bulge tests. All existing techniques make use of reflection from the film surface, but they can be difficult or impossible to apply to very thin, transparent films. Consequently, a novel approach based on the formation of a lens structure and using transmitted light is developed. In this technique, the focal length of the lens structure formed by the bulged film and the pressurizing medium is determined by moiré deflectometry with a corrected governing equation. The resulting curvature of the bulge film is used in the stress analysis of the bulge-test. By combining circular and rectangular configurations, the Young’s modulus and Poisson’s ratio of a 3 μm PET film were 4.65 ± 0.11 GPa and 0.34 ± 0.01, respectively. Consistent residual stresses were obtained from both configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun S-S, Dalton LR (2008) Introduction to organic electronic and optoelectronic materials and devices. CRC, Boca Raton xxiv, 910 p

    Google Scholar 

  2. Gale MT et al (2005) Replication technology for optical microsysterns. Opt Lasers Eng 43(3–5):373–386

    Article  Google Scholar 

  3. Cadarso VJ et al (2008) 3-D modulable PDMS-based microlens system. Opt Express 16(7):4918–4929

    Article  Google Scholar 

  4. Kim JT, Choi CG (2006) Simultaneous optical/electrical interconnection of polymer planar-lightwave-circuit chip based on polymer MOEMS and replication technology. Sens Actuators, A, Phys 126(2):425–429

    Article  Google Scholar 

  5. Saliterman SS (2006) Fundamentals of BioMEMS and medical microdevices. SPIE, Boca Raton 608 p

    Google Scholar 

  6. Bhushan B (1992) Mechanics and reliability of flexible magnetic media. Springer-Verlag, New York xiv, 564 p

    Google Scholar 

  7. Beams JW (1959) Mechnical properties of thin films of gold and silver. Structure and properties of thin films; proceedings. Neugebauer CA (ed). Wiley, New York, xiv, 561 p

  8. Allen MG et al (1987) Microfabricated structures for the insitu measurement of residual-stress, youngs modulus, and ultimate strain of thin-films. Appl Phys Lett 51(4):241–243

    Article  Google Scholar 

  9. Vlassak JJ, Nix WD (1992) A new bulge test technique for the determination of young modulus and poisson ratio of thin-films. J Mater Res 7(12):3242–3249

    Article  Google Scholar 

  10. Zheng DW et al (2000) Mechanical property measurement of thin polymeric-low dielectric-constant films using bulge testing method. Appl Phys Lett 76(15):2008–2010

    Article  Google Scholar 

  11. Kalkman AJ et al (1999) A novel bulge-testing setup for rectangular free-standing thin films. Rev Sci Instrum 70(10):4026–4031

    Article  Google Scholar 

  12. Kalkman AJ, Verbruggen AH, Janssen G (2003) High-temperature bulge-test setup for mechanical testing of free-standing thin films. Rev Sci Instrum 74(3):1383–1385

    Article  Google Scholar 

  13. Schweitzer EW, Goken M (2007) In situ bulge testing in an atomic force microscope: microdeformation experiments of thin film membranes. J Mater Res 22(10):2902–2911

    Article  Google Scholar 

  14. Xu DW, Liechti KM, de Lumley-Woodyear TH (2006) Closed form nonlinear analysis of the peninsula blister test. J Adhes 82(8):831–866

    Article  Google Scholar 

  15. Jansen KMB, Gonda V, Ernst LJ (2005) State-of-the-art of thermo-mechanical characterization of thin polymer films. J Electron Packag 127(4):530–536

    Article  Google Scholar 

  16. Tsakalakos T (1981) The bulge test — a comparison of theory and experiment for isotropic and anisotropic films. Thin Solid Films 75(3):293–305

    Article  Google Scholar 

  17. Small MK, Nix WD (1992) Analysis of the accuracy of the bulge test in determining the mechanical-properties of thin-films. J Mater Res 7(6):1553–1563

    Article  Google Scholar 

  18. Kafri O (1980) Noncoherent method for mapping phase objects. Opt Lett 5(12):555–557

    Article  Google Scholar 

  19. Kafri O, Glatt I (1990) The physics of moire metrology. Wiley series in pure and applied optics. Wiley, New York xiii, 194 p

    Google Scholar 

  20. Allen MG, Senturia SD (1988) Analysis of critical debonding pressures of stressed thin-films in the blister test. J Adhes 25(4):303–315

    Article  Google Scholar 

  21. Williams JG (1997) Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int J Fract 87(3):265–288

    Article  Google Scholar 

  22. Wan KT, Guo S, Dillard DA (2003) A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425(1–2):150–162

    Article  Google Scholar 

  23. Karny Z, Kafri O (1982) Refractive-index measurements by Moire deflectometry. Appl Optics 21(18):3326–3328

    Article  Google Scholar 

  24. Gent AN, Lewandowski LH (1987) Blow-off pressures for adhering layers. J Appl Polym Sci 33(5):1567–1577

    Article  Google Scholar 

  25. Xiang Y, Chen X, Vlassak JJ (2005) Plane-strain bulge test for thin films. J Mater Res 20(9):2360–2370

    Article  Google Scholar 

  26. Born M, Wolf E, Bhatia AB (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 7th (expanded) ed. Cambridge University Press, Cambridge xxxiii, 952 p

    Google Scholar 

  27. Tippur HV, Krishnaswamy S, Rosakis AJ (1991) Optical mapping of crack tip deformations using the methods of transmission and reflection coherent gradient sensing — a study of crack tip K-dominance. Int J Fract 52(2):91–117

    Google Scholar 

  28. Tippur HV, Rosakis AJ (1991) Quasi-static and dynamic crack-growth along bimaterial interfaces — a note on crack-tip field-measurements using coherent gradient sensing. Exp Mech 31(3):243–251

    Article  Google Scholar 

  29. Okabe Y et al (1999) Determination of the orthotropic elastic constants of thin PET film by an ultrasonic micro-spectrometer. IEEE Trans Ultrason Ferroelectr Freq Control 46(5):1269–1275

    Article  Google Scholar 

  30. Zhang SL, Li JCM (2004) Anisotropic elastic moduli and Poisson’s ratios of a poly(ethylene terephthalate) film. J Polym Sci, B, Polym Phys 42(2):260–266

    Article  Google Scholar 

  31. Bhushan B, Mokashi PS, Ma T (2003) A technique to measure Poisson’s ratio of ultrathin polymeric films using atomic force microscopy. Rev Sci Instrum 74(2):1043–1047

    Article  Google Scholar 

  32. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. 2d ed. Engineering societies monographs. McGraw-Hill, New York 580 p

    Google Scholar 

  33. Kafri O, Meyerstein D, Karny Z (1983) Frequency marker based on Moire deflectometry. Opt Lasers Eng 4(1):55–61

    Article  Google Scholar 

  34. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Uni-Pixel Inc. for financial and technical assistance in the course of this study. In addition, we would like to acknowledge some generous and fruitful discussions with Professor K. T. Wan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Liechti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Liechti, K.M. Bulge Testing Transparent Thin Films with Moiré Deflectometry. Exp Mech 50, 217–225 (2010). https://doi.org/10.1007/s11340-009-9291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9291-0

Keywords

Navigation