Skip to main content
Log in

The Fracture Process of Tempered Soda-Lime-Silica Glass

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This work presents experimental observations of the characteristic fracture process of tempered glass. Square specimens with a side length of 300 mm, various thicknesses and a residual stress state characterized by photoelastic measurements were used. Fracture was initiated using a 2.5 mm diamond drill and the fragmentation process was captured using High-Speed digital cameras. From the images, the average speed of the fracture front propagation was determined within an accuracy of 1.0%. Two characteristic fragments were found to form on each side of the initiation point and are named “Whirl-fragments” referring to the way they are generated. An earlier estimation of the in-plane shape of the fracture front is corrected and a hypothesis on the development for the fracture front is offered. The hypothesis is supported by investigations of the fragments using a Scanning Electron Microscope (SEM) which also revealed a micro scale crack bridging effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Acloque P (1956) Influence of strain-systems in glass upon the course of its fracture. In: Proc. 4th. international congress on Glass Chaix, Paris, pp 95–106 (in French)

  2. Acloque P (1962) High speed cinematographic study of the fracture process in toughened glass. In: Symposium on mechanical strength of glass and ways of improving it. pp 851–886 (in French)

  3. Acloque P (1963) La fracture du verre propagation - influence des précontraintes. Verres Refract 17(3):151–162 (in French)

    Google Scholar 

  4. Acloque P (1975) Déformation et rupture des verres. Ann Mines 2:57–66 (in French)

    Google Scholar 

  5. Acloque P, Guillemet C (1963) The course of fracture propagation in glass under varying strain. In: Advances in Glass Technology—Part 2 (in French)

  6. Adams L, Williamson E (1920) The annealing of glass. J Franklin Inst 190:597–632

    Article  Google Scholar 

  7. Anton J, Aben H (2003) A compact scattered light polariscope for residual stress measurement in glass plates. In: Glass processing days

  8. Barsom J (1968) Fracture of tempered glass. J Am Ceram Soc 51(2):75–78

    Article  Google Scholar 

  9. Bartenev G (1948) The phenomenon of the hardening of glass. J Tech Phys 18:383–388 (in Russian)

    Google Scholar 

  10. Beason WL, Morgan JR (1984) Glass failure prediction model. J Struct Eng 110(2):197–212

    Article  Google Scholar 

  11. Chaudhri MM, Liangyi C (1986) The catastrophic failure of thermally tempered glass caused by small-particle impact. Nature 320(6057):48–50

    Article  Google Scholar 

  12. Cranz C, Schardin H (1929) Kinematographie auf ruhendem film und mit extrem hoher bildfrequenz. Z Phys 56(3–4):147–183 (in German)

    Google Scholar 

  13. Daudeville L, Carre H (1998) Thermal tempering simulation of glass plates: inner and edge residual stresses. J Therm Stress 21(6):667–689

    Article  Google Scholar 

  14. Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Gardon R (1980) Glass Science and technology 5: elasticity and strength in glasses, chap 5. Academic, London, pp 145–216

    Google Scholar 

  16. Griffith A (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198

    Google Scholar 

  17. Hull D (1999) Fractography—observing, measuring and interpreting fracture surface topography. Cambridge University Press, Cambridge

    Google Scholar 

  18. Inglis CE (1913) Stresses in a plate due to the presence of cracks and sharp corners. In: Proc. Inst. Naval Architects

  19. Kerkhof F (1963) Maximale bruchgeschwindigkeit und spezifische oberflächenenergie. Die Naturwissenschaften 50(17):565–566 (in German)

    Article  Google Scholar 

  20. Kurkjian C (1963) Relaxation of torsional stress in transformation range of soda-lime-silica glass. Phys Chem Glasses 4(4):128–136

    Google Scholar 

  21. Laufs W, Sedlacek G (1999) Stress distribution in thermally tempered glass panes near the edges, corners and holes: Part 2. Distribution of thermal stresses. Glass Sci Technol Glastech Ber 72(2):42–48

    Google Scholar 

  22. Lee E, Rogers T, Woo T (1965) Residual stresses in a glass plate cooled symmetrically from both surfaces. J Am Ceram Soc 48(9):480–487

    Article  Google Scholar 

  23. Narayanaswamy O (1971) A model of structural relaxation in glass. J Am Ceram Soc 54(10):491–498

    Article  Google Scholar 

  24. Narayanaswamy O (1978) Stress and structural relaxation in tempering glass. J Am Ceram Soc 61(3–4):146–152

    Article  Google Scholar 

  25. Narayanaswamy O (2001) Evolution of glass tempering models. In: Glass processing days

  26. Nielsen J, Olesen J, Stang H, Poulsen P (2007) An implementation of 3d viscoelastic behavior for glass during toughening. In: Glass performance days

  27. Schwarzl F, Staverman A (1952) Time-temperature dependence of linear viscoelastic behavior. J Appl Phys 23(8):838–843

    Article  MATH  Google Scholar 

  28. Soules T, Busbey R, Rekhson S, Markovsky A, Burke M (1987) Finite-element calculation of stresses in glass parts undergoing viscous relaxation. J Am Ceram Soc 70(2):90–95

    Article  Google Scholar 

  29. Takahashi K (1999) Fast fracture in tempered glass. Key Eng Mater 166:9–18

    Article  Google Scholar 

  30. Takahashi K, Aratani SI, Yamauchi Y (1992) Dynamic fracture in zone-tempered glasses observed by high-speed photoelastic colour photography. J Mater Sci Lett 11(1):15–17

    Article  Google Scholar 

  31. Wallner H (1939) Linienstructuren an bruchflächen. Z Phys 114(5–6):368–378 (in German)

    Google Scholar 

  32. Wiederhorn S (1969) Fracture surface energy of glass. J Am Ceram Soc 52(2):99–105

    Article  Google Scholar 

  33. Yoffe E (1951) The moving griffith crack. Philos Mag 42:739–750

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mads Bonde at ScanGlas (DK) for providing the glass specimens, The Villum Kann Rasmussen foundation for sponsoring the digital high-speed cameras, and Ebba Cederberg Schnell at DTU Byg for assisting with the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, J.H., Olesen, J.F. & Stang, H. The Fracture Process of Tempered Soda-Lime-Silica Glass. Exp Mech 49, 855–870 (2009). https://doi.org/10.1007/s11340-008-9200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9200-y

Keywords

Navigation