Skip to main content
Log in

Identification of Elasto-Plastic Constitutive Parameters from Statically Undetermined Tests Using the Virtual Fields Method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an experimental validation of the use of the virtual fields method to identify the elasto-plastic behaviour of an iron specimen from full-field measurements with the grid method and a simple heterogeneous test configuration. The experimental procedure is carefully detailed since it is of primary importance to obtain good identification results. In particular, the use of two back-to-back cameras has proved essential to eliminate out-of-plane effects. Then, the procedure for extracting the elastic parameters and the parameters of a Voce’s hardening model using the virtual fields method is presented. The results are very convincing and encouraging for future developments using more complex test geometries leading to fully multi-axial stress states. It is a first step towards the development of such inverse procedures as an alternative to difficult and costly methods involving homogeneous tests using multi-axial testing machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahnken R, Stein E (1996) Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int J Plast 12:451–476.

    Article  MATH  Google Scholar 

  2. Mahnken R (1999) Aspects on the finite element implementation of the gurson model including parameter identification. Int J Plast 15:1111–1137.

    Article  MATH  Google Scholar 

  3. Bruhns OT, Anding DK (1999) On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behaviour. Int J Plast 15:1311–1340.

    Article  MATH  Google Scholar 

  4. Harth T, Schwan S, Lehn J, Kollmann FG (2004) Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments. Int J Plast 20:1403–1440.

    Article  MATH  Google Scholar 

  5. Yoshida F, Urabeb M, Hinoa R, Toropov VV (2004) Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet. Int J Plast 19:2149–2170.

    Article  Google Scholar 

  6. Laws V (1981) Derivation of the tensile stress-strain curve from bending data. J Mater Sci 16:1299–1304.

    Article  Google Scholar 

  7. Mayville RA, Finnie I (1982) Uniaxial stress-strain curves from a bending test. Exp Mech 22:197–201.

    Article  Google Scholar 

  8. Brunet M, Morestin F, Godereaux S (2001) Nonlinear kinematic hardening identification for anisotropic sheet metals with bending-unbending tests. J Eng Mater Technol 123:378–383.

    Article  Google Scholar 

  9. Zhao KM (2004) Inverse estimation of material properties for sheet metals. Commun Numer Methods Eng 20:105–118.

    Article  MATH  Google Scholar 

  10. Kajberg J, Sundin KG, Melin LG, Ståhle P (2004) High strain rate tensile and viscoplastic parameter identification using micoscopic high-speed photography. Int J Plast 20:561–575.

    Article  MATH  Google Scholar 

  11. Mahnken R, Stein E (1994) The identification of parameters for visco-plastic models via finite-elements methods and gradient methods. Model Simul Mater Sci Eng 2:597–616.

    Article  Google Scholar 

  12. Mahnken R, Stein E (1996) A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng 136:225–258.

    Article  MATH  Google Scholar 

  13. Meuwissen MHH (1998) An inverse method for the echanical characterisation of metals. PhD thesis, Eindhoven Technical University, The Netherlands.

  14. Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Technol 75:204–211.

    Article  Google Scholar 

  15. Okada H, Fukui Y, Kumazawa N (1999) An inverse analysis determining the elastic-plastic stress-strain relationship using nonlinear sensitivities. Comput Model Simul Eng 4(3):176–185.

    Google Scholar 

  16. Hoc T, Crépin J, Gélébart L, Zaoui A (2003) A procedure for identifying the plastic behaviour of single crystals from the local response of polycrystals. Acta Mater 51:5477–5488.

    Article  Google Scholar 

  17. Kajberg J, Lindkvist G (2004) Characterization of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41:3439– 3459.

    Article  MATH  Google Scholar 

  18. Geng L, Shen Y, Wagoner, RH (2002) Anisotropic hardening equations derived from reverse-bend testing. Int J Plast 18(5–6).

    Google Scholar 

  19. Grédiac M (1989) Principe des travaux virtuels et identification. Comptes Rendus de l’Académie des Sciences 309(2):1–5 (in French with English abstract).

  20. Grediac M, Pierron F, Surrel Y (1999) Novel procedure for complete in-plane composite characterization using a single T-shaped specimen. Exp Mech 39(2):142–149.

    Article  Google Scholar 

  21. Moulart R, Avril S, Pierron F (2006) Identification of the through-thickness rigidities of a thick laminated composite tube. Composites Part A: Applied Science and Manufacturing, Oregon.

    Google Scholar 

  22. Grediac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 1–Principle and definition. Int. J. Solids Strucs. 39(10):2691–2705.

    Article  MATH  Google Scholar 

  23. Grediac M, Toussaint F, Pierron E (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 2–application to in-plane properties. Int. J. Solids Strucs. 39(10):2707–2730.

    Article  MATH  Google Scholar 

  24. Avril S, Gédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput. Mech. 34(6):439–452.

    Google Scholar 

  25. Grediac M, Pierron F (2005) Applying the virtual field method to the identification of elasto-plastic constitutive parameters. Int J Plast. 26(4):602–607.

    Google Scholar 

  26. Voce E (1955) A practical strain-hardening function. Metallurgia 51:219–226.

    Google Scholar 

  27. Kobayashi A (1993) Handbook on Exp Mech, 2nd edn. Society for Exp Mech, Connecticut.

    Google Scholar 

  28. Surrel Y Optique C1. http://www.cnam.fr/instrumesure/.

  29. Surrel Y (1994) Moiré and grid methods: a signal processing approach. In: Ryszard J. Pryputniewicz, Jacek Stupnicki (eds) Interferometry ‘94: photomechanics, vol. 2342. The International Society for Optical Engineering, pp. 213–220.

  30. Creath K (1988) Phase measurement interferometry techniques. In: Wolf E (ed) Progress in optics, Elsevier, Amsterdam, The Netherlands; New York, vol. 26, chap. 5, pp. 349–383.

  31. Phillion DW (1997) General methods for generating phase-shifting interferometry algorithms. Appl Opt 36(31):8098–8115.

    Article  Google Scholar 

  32. Surrel Y (1996) Design of algorithms for phase measurements by the use of phase-stepping. Appl Opt 35(1):51–60.

    Article  Google Scholar 

  33. Surrel Y (2000) Fringe analysis. In: Rastogi PK (ed) Photomechanics / TAP77. Springer, Berlin Heidelberg New York, pp. 57–104.

    Google Scholar 

  34. Parks VJ (1993) Geometric moiré. In: Kobayashi A (ed) Handbook on experimental mechanics, 2nd edn. Society for Exp Mech, Connecticut, chap. 6, pp. 267–296,

    Google Scholar 

  35. Post D (1982) Developments in moiré interferometry. Opt Eng 21(3):458–467.

    Google Scholar 

  36. Piro J-L, Grédiac M (2004) Producing and transferring lowspatial-frequency grids for measuring displacement fields with moiré and grid methods. Exp Tech 28(4):23–26.

    Article  Google Scholar 

  37. Sutton MA, Deng X, Liu J, Yang L (1996) Determination of elastic-plastic stresses and strains from measured surface strain data. Exp Mech 36(2):99–112.

    Article  Google Scholar 

  38. Lemaître J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, UK.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rotinat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pannier, Y., Avril, S., Rotinat, R. et al. Identification of Elasto-Plastic Constitutive Parameters from Statically Undetermined Tests Using the Virtual Fields Method. Exp Mech 46, 735–755 (2006). https://doi.org/10.1007/s11340-006-9822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-9822-x

Keywords

Navigation