Skip to main content
Log in

Network Trees: A Method for Recursively Partitioning Covariance Structures

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In many areas of psychology, correlation-based network approaches (i.e., psychometric networks) have become a popular tool. In this paper, we propose an approach that recursively splits the sample based on covariates in order to detect significant differences in the structure of the covariance or correlation matrix. Psychometric networks or other correlation-based models (e.g., factor models) can be subsequently estimated from the resultant splits. We adapt model-based recursive partitioning and conditional inference tree approaches for finding covariate splits in a recursive manner. The empirical power of these approaches is studied in several simulation conditions. Examples are given using real-life data from personality and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For further details on this process and its asymptotic properties see Hjort and Koning (2002) and Zeileis and Hornik (2007).

  2. Occasionally, altering \(\varvec{\rho }\) caused \({\mathbf {R}}\) to be non-positive-definite, in which case we located an approximate positive definite solution or discarded the case if an approximate case could not be found.

  3. See https://openpsychometrics.org/.

References

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5\(\textregistered \)). Washington: American Psychiatric Publishing.

  • Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61, 821–856.

    Google Scholar 

  • Boker, S. M., & Martin, M. (2018). A conversation between theory, methods, and data. Multivariate Behavioral Research, 53(6), 806–819.

    PubMed  PubMed Central  Google Scholar 

  • Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16, 5–13.

    PubMed  PubMed Central  Google Scholar 

  • Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees. Psychological Methods, 18(1), 71.

    PubMed  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New York: Chapman & Hall/CRC.

    Google Scholar 

  • Brown, T. A., Chorpita, B. F., Korotitsch, W., & Barlow, D. H. (1997). Psychometric properties of the depression anxiety stress scales (DASS) in clinical samples. Behaviour Research and Therapy, 35, 79–89.

    PubMed  Google Scholar 

  • Cabrieto, J., Tuerlinckx, F., Kuppens, P., Wilhelm, F. H., Liedlgruber, M., & Ceulemans, E. (2018). Capturing correlation changes by applying kernel change point detection on the running correlations. Information Sciences, 447, 117–139.

    Google Scholar 

  • Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 68–78.

    Google Scholar 

  • Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. (2016). Toward a formalized account of attitudes: The causal attitude network (CAN) model. Psychological Review, 123, 2–22.

    Google Scholar 

  • Drasgow, F. (1986). Polychoric and polyserial correlations. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of statistical sciences (Vol. 7, pp. 68–74). New York: Wiley.

    Google Scholar 

  • Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195–212.

    PubMed  Google Scholar 

  • Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18.

    Google Scholar 

  • Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82, 904–927.

    Google Scholar 

  • Fokkema, M., Smits, N., Zeileis, A., Hothorn, T., & Kelderman, H. (2018). Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees. Behavior Research Methods, 50, 2016–2034.

    PubMed  Google Scholar 

  • Fried, E. I., & Nesse, R. M. (2015). Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. Journal of Affective Disorders, 172, 96–102.

    PubMed  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432–441.

    PubMed  Google Scholar 

  • Fritz, J., Fried, E. I., Goodyer, I. M., Wilkinson, P. O., & van Harmelen, A.-L. (2018). A network model of resilience factors for adolescents with and without exposure to childhood adversity. Scientific Reports, 8, 15774.

    PubMed  PubMed Central  Google Scholar 

  • Gosling, S. D., Rentfrow, P. J., & Swann, W. B, Jr. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37, 504–528.

    Google Scholar 

  • Hanley, G. P., Iwata, B. A., & McCord, B. E. (2003). Functional analysis of problem behavior: A review. Journal of Applied Behavior Analysis, 36, 147–185.

    PubMed  PubMed Central  Google Scholar 

  • Hansen, B. E. (1997). Approximate asymptotic \(p\) values for structural-change tests. Journal of Business & Economic Statistics, 15, 60–67.

    Google Scholar 

  • Haslbeck, J., & Fried, E. I. (2017). How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychological Medicine, 47, 2767–2776.

    PubMed  Google Scholar 

  • Haslbeck, J. M. B., Borsboom, D., & Waldorp, L. J. (2019). Moderated network models. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2019.1677207.

  • Hjort, N. L., & Koning, A. (2002). Tests for constancy of model parameters over time. Nonparametric Statistics, 14, 113–132.

    Google Scholar 

  • Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A. (2006a). A lego system for conditional inference. The American Statistician, 60, 257–263.

    Google Scholar 

  • Hothorn, T., Hornik, K., & Zeileis, A. (2006b). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15, 651–674.

    Google Scholar 

  • Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. Journal of Machine Learning Research, 16, 3905–3909.

    Google Scholar 

  • Jones, P., Simon, T., & Zeileis, A. (2018). networktree: Recursive Partitioning of Network Models. R package version 1.0.0.

  • Jones, P. J., Heeren, A., & McNally, R. J. (2017). Commentary: A network theory of mental disorders. Frontiers in Psychology, 8, 1305.

    PubMed  PubMed Central  Google Scholar 

  • Komboz, B., Strobl, C., & Zeileis, A. (2018). Tree-based global model tests for polytomous Rasch models. Educational and Psychological Measurement, 78, 128–166.

    PubMed  Google Scholar 

  • Mair, P., & De Leeuw, J. (2010). A general framework for multivariate analysis with optimal scaling: The R package aspect. Journal of Statistical Software, 32, 1–23.

    Google Scholar 

  • Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L., et al. (2018). An introduction to network psychometrics: Relating ising network models to item response theory models. Multivariate Behavioral Research, 53, 15–35.

    PubMed  Google Scholar 

  • McNally, R. J. (2019). The network takeover reaches psychopathology. Behavioral and Brain Sciences, 42, e15.

    Google Scholar 

  • Merkle, E. C., Fan, J., & Zeileis, A. (2014). Testing for measurement invariance with respect to an ordinal variable. Psychometrika, 79, 569–584.

    PubMed  Google Scholar 

  • Merkle, E. C., & Shaffer, V. A. (2011). Binary recursive partitioning methods with application to psychology. British Journal of Mathematical and Statistical Psychology, 64, 161–181.

    Google Scholar 

  • Merkle, E. C., & Zeileis, A. (2013). Tests of measurement invariance without subgroups: A generalization of classical methods. Psychometrika, 78, 59–82.

    PubMed  Google Scholar 

  • Molenaar, P. C. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2, 201–218.

    Google Scholar 

  • Park, J. H., & Sohn, Y. (2019). Detecting structural changes in longitudinal network data. Bayesian Analysis, 15, 133–157.

    Google Scholar 

  • R Development Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

  • Salters-Pedneault, K., Tull, M. T., & Roemer, L. (2004). The role of avoidance of emotional material in the anxiety disorders. Applied and Preventive Psychology, 11, 95–114.

    Google Scholar 

  • Schaefer, J., Opgen-Rhein, R., & Strimmer, K. (2015). GeneNet: Modeling and inferring gene networks. R package version, 1(2), 13.

    Google Scholar 

  • Schaefer, J., & Strimmer, K. (2004). An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754–764.

    Google Scholar 

  • Schlosser, L., Hothorn, T., and Zeileis, A. (2019). A unifying view of CTree, MOB, and GUIDE. arXiv:1906.10179, E-Print Archive.

  • Seibold, H., Zeileis, A., & Hothorn, T. (2016). Model-based recursive partitioning for subgroup analyses. The International Journal of Biostatistics, 12, 45–63.

    PubMed  Google Scholar 

  • Strasser, H., & Weber, C. (1999). On the asymptotic theory of permutation tests. Mathematical Methods of Statistics, 8, 220–250.

    Google Scholar 

  • Strobl, C., Kopf, J., & Zeileis, A. (2015). Rasch trees: A new method for detecting differential item functioning in the Rasch model. Psychometrika, 80, 289–316.

    PubMed  Google Scholar 

  • Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14, 323–348.

    PubMed  PubMed Central  Google Scholar 

  • Strobl, C., Wickelmaier, F., & Zeileis, A. (2011). Accounting for individual differences in Bradley–Terry models by means of recursive partitioning. Journal of Educational and Behavioral Statistics, 36, 135–153.

    Google Scholar 

  • van Borkulo, C. D., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R. A., Borsboom, D., & Waldorp, L. J. (2017). Comparing network structures on three aspects: A permutation test. Journal of Statistical Software. Forthcoming.

  • Wang, T., Merkle, E. C., & Zeileis, A. (2014). Score-based tests of measurement invariance: Use in practice. Frontiers in Psychology, 5, 1–11.

    Google Scholar 

  • Wickelmaier, F., & Zeileis, A. (2018). Using recursive partitioning to account for parameter heterogeneity in multinomial processing tree models. Behavior Research Methods, 50, 1217–1233.

    PubMed  Google Scholar 

  • Williams, D. R., Rast, P., Pericchi, L. R., & Mulder, J. (2020). Comparing Gaussian graphical models with the posterior predictive distribution and Bayesian model selection. Psychological Methods, 25, 653–672.

    PubMed  Google Scholar 

  • Zeileis, A. (2006). Implementing a class of structural change tests: An econometric computing approach. Computational Statistics & Data Analysis, 50, 2987–3008.

    Google Scholar 

  • Zeileis, A., & Hornik, K. (2007). Generalized \(M\)-fluctuation tests for parameter instability. Statistica Neerlandica, 61, 488–508.

    Google Scholar 

  • Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17, 492–514.

    Google Scholar 

Download references

Acknowledgements

P. Jones acknowledges funding from the National Science Foundation (GRFP, Grant No. DGE1745303). T. Simon acknowledges funding from the Austrian Science Fund (FWF, Grant No. P31836).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payton J. Jones.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Score Functions of the Multivariate Gaussian Distribution

Appendix: Score Functions of the Multivariate Gaussian Distribution

We derive the score functions of the multivariate Gaussian distribution for individual observations. In order to fit the networktree model described in the paper, one only requires the score functions of the correlation parameters. However, for the sake of completeness the score functions for all parameters, i.e., mean, standard deviation, and correlations, are derived. The first derivatives of the log-likelihood, as given in Eq. (2), w.r.t. the parameters \(\mu _k\), \(\sigma _k\), and \(\rho _{kl}\) are given below. Note that we use the scalar parameter expressions rather than vector notation. The partial derivative w.r.t. \(\mu _k\) is:

$$\begin{aligned} \frac{\partial \ell }{\partial \mu _k} = \sum _{l=1}^{p} \varsigma _{kl} (y_l - \mu _l), \end{aligned}$$

where \(\varsigma _{kl}\) denotes the element in the k-th row and l-th column of the inverse of the covariance matrix \(\varvec{\Sigma }^{-1}\). The partial derivative w.r.t. \(\sigma _k\) is:

$$\begin{aligned} \frac{\partial \ell }{\partial \sigma _k} = -\frac{1}{\sigma _k} + \frac{1}{\sigma _k} \left( \frac{y_k - \mu _k}{\sigma _k}\right) \sum _{l=1}^{p} \omega _{kl} \left( \frac{y_l - \mu _l}{\sigma _l}\right) , \end{aligned}$$

where \(\omega _{kl}\) denotes the element in the k-th row and l-th column of the inverse of the correlation matrix \(\mathbf {R}^{-1}\). Finally, the partial derivative w.r.t. \(\rho _{kl}\) is:

$$\begin{aligned} \frac{\partial \ell }{\partial \rho _{kl}} = -\frac{1}{2} \omega _{ij} + \frac{1}{2} \left( \sum _{m=1}^{p} \omega _{km}\left( \frac{y_m - \mu _m}{\sigma _m}\right) \right) \left( \sum _{m=1}^{p} \omega _{lm}\left( \frac{y_m - \mu _m}{\sigma _m}\right) \right) . \end{aligned}$$

Note that these are the ones used in our NT approach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, P.J., Mair, P., Simon, T. et al. Network Trees: A Method for Recursively Partitioning Covariance Structures. Psychometrika 85, 926–945 (2020). https://doi.org/10.1007/s11336-020-09731-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-020-09731-4

Keywords

Navigation