Skip to main content

Advertisement

Log in

Bayes Factor Covariance Testing in Item Response Models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679. doi:10.1080/01621459.1993.10476321.

    Article  Google Scholar 

  • Albert, J. H., & Chib, S. (1997). Bayesian test and model diagnostic in conditionally independent hierarchical models. Journal of the American Statistical Association, 92, 916–925.

    Article  Google Scholar 

  • Azevedo, C. L. N., Fox, J.-P., & Andrade, D. F. (2016). Bayesian longitudinal item response modeling with restricted covariance pattern structures. Statistics and Computing, 26, 443–460. doi:10.1007/s11222-014-9518-5.

    Article  Google Scholar 

  • Box, G., & Tiao, G. (1973). Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Cai, B., & Dunson, D. B. (2006). Bayesian covariance selection in generalized linear mixed models. Biometrics, 62, 446–457.

    Article  PubMed  Google Scholar 

  • Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85, 347–361.

    Article  Google Scholar 

  • Daniels, M. J., & Pourahmadi, M. (2002). Bayesian anaysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553–566.

    Article  Google Scholar 

  • De Boeck, P. (2008). Random item irt models. Psychometrika, 73, 533–559.

    Article  Google Scholar 

  • De Jong, M. G., Steenkamp, J. B. E. M., & Fox, J.-P. (2007). Relaxing cross-national measurement invariance using a hierarchical IRT model. Journal of Consumer Research, 34, 260–278.

    Article  Google Scholar 

  • Edwards, Y. D., & Allenby, G. M. (2003). Multivariate analysis of multiple response data. Journal of Marketing Research, 40, 321–334.

    Article  Google Scholar 

  • Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. New York, NY: Springer. doi:10.1007/978-1-4419-0742-4.

    Book  Google Scholar 

  • Hoff, P. D. (2009). A first course in Bayesian statistical methods. New York, NY: Springer.

    Book  Google Scholar 

  • Hsiao, C. K. (1997). Approximate bayes factors when a mode occurs on the boundary. Journal of the American Statistical Association, 92, 656–663.

    Article  Google Scholar 

  • Jeffreys, H. (1961). Theory of probability (3rd ed.). New York, NY: Oxford University Press.

    Google Scholar 

  • Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.

    Article  Google Scholar 

  • Kinney, S. K., & Dunson, D. B. (2008). Fixed and random effects selection in linear and logistic models. Biometrics, 63, 690–698.

    Article  Google Scholar 

  • Klugkist, I., & Hoijtink, H. (2007). The bayes factor for inequality and about equality constrained models. Computational Statistics and Data Analysis, 51, 6367–6379.

    Article  Google Scholar 

  • Lancaster, H. O. (1965). The helmert matrices. The American Mathematical Monthly, 72, 4–12.

    Article  Google Scholar 

  • Mulder, J. (2014). Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses. Computational Statistics and Data Analysis, 71, 448–463.

    Article  Google Scholar 

  • Mulder, J., Hoijtink, H., & Klugkist, I. (2010). Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors. Journal of Statistical Planning and Inference, 140, 887–906.

    Article  Google Scholar 

  • O’Hagan, A. (1995). Fractional bayes factors for model comparison. Journal of the Royal Statistical Society, Series B, 57, 99–138.

    Google Scholar 

  • Pauler, D. K., Wakefield, J. C., & Kass, R. E. (1999). Bayes factors and approximations for variance component models. Journal of the American Statistical Association, 94, 1242–1253.

    Article  Google Scholar 

  • Perrakisa, K., Ntzoufrasa, I., & Tsionasb, E. (2014). On the use of marginal posteriors in marginal likelihood estimation via importance sampling. Computational Statistics and Data Analysis, 77, 54–69.

    Article  Google Scholar 

  • Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). Coda: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7–11.

    Google Scholar 

  • Saville, B. R., & Herring, A. H. (2009). Testing random effects in the linear mixed model using approximate bayes factors. Biometrics, 65, 369–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Searle, S. R. (1971). Linear models (2nd ed.). London: Wiley.

    Google Scholar 

  • Sinharay, S. (2013). A note on assessing the added value of subscores. Educational Measurement: Issues and Practice, 32, 38–42.

    Article  Google Scholar 

  • Sinharay, S., Johnson, M. S., & Stern, H. S. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement, 30, 298–321. doi:10.1177/0146621605285517.

    Article  Google Scholar 

  • Sinharay, S., & Stern, H. S. (2002). On the sensitivity of bayes factors to the prior distributions. The American Statistician, 56, 196–201.

    Article  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, FL: Chapman and Hall.

    Book  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583–639.

    Article  Google Scholar 

  • Stout, W., Habing, B., Douglas, J., Kim, H. R., Roussos, L., & Zhang, J. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331–354. doi:10.1177/014662169602000403.

    Article  Google Scholar 

  • van der Linden, W. J., & Hambleton, R. K. (1997). Item response theory: Brief history, common models, and extensions. In W. van der Linden & R. Hambleton (Eds.), Handbook of modern item response theory (pp. 1–28). New York, NY: Springer.

    Chapter  Google Scholar 

  • Verhagen, A. J., & Fox, J.-P. (2013a). Bayesian tests of measurement invariance. British Journal of Mathematical and Statistical Psychology, 66, 383–401. doi:10.1111/j.2044-8317.2012.02059.x.

    PubMed  Google Scholar 

  • Verhagen, A. J., & Fox, J.-P. (2013b). Longitudinal measurement in health-related surveys. A Bayesian joint growth model for multivariate ordinal responses. Statis- tics in Medicine, 32, 2988–3005. doi:10.1002/sim.5692.

    Article  Google Scholar 

  • Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its applications. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Yao, L. (2010). Reporting valid and reliable overall scores and domain scores. Journal of Educational Measurement: Issues and Practice, 47, 339–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Fox.

Appendices

Appendix A: (Orthogonal) Helmert Transformation Matrix

An orthogonal matrix \(\mathbf {H}\) has the property that \(\mathbf {H}^t\mathbf {H} = \mathbf {H}\mathbf {H}^t=\mathbf {I}\), where the rows of \(\mathbf {H}\) are mutually orthogonal and each row has a unit norm. A particular \((p\times p)\) orthogonal matrix is the Helmert matrix, where the first row has elements \(p^{-\frac{1}{2}}\), and all zeroes of the triangle above the main diagonal and below the first row. The remaining elements below the main diagonal are positive, where row j \((j=2,\ldots ,p)\) has elements \(\left[ \frac{1}{\sqrt{j(j+1)}} \mathbf {1}^t_j,\frac{-j}{\sqrt{j(j+1)}},\mathbf {0}\right] \). Lancaster (1965) referred to it as Helmertian in the strict sense and showed various properties of Helmert matrices (see also, Searle, 1971, pp. 31–33). Subsequently, the Helmert matrix of order p is given by

$$\begin{aligned} \mathbf {H} = \left[ \begin{array}{cccccc} \frac{1}{\sqrt{p}} &{} \frac{1}{\sqrt{p}} &{} \frac{1}{\sqrt{p}} &{} \cdots &{} \frac{1}{\sqrt{p}}\\ \frac{1}{\sqrt{2}} &{} -\frac{1}{\sqrt{2}} &{} 0 &{} \cdots &{} 0\\ \frac{1}{\sqrt{6}} &{} \frac{1}{\sqrt{6}} &{} -\frac{2}{\sqrt{6}} &{} \ddots &{} \vdots \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} 0 \\ \frac{1}{\sqrt{p(p-1)}} &{} \frac{1}{\sqrt{p(p-1)}} &{} \frac{1}{\sqrt{p(p-1)}} &{} \cdots &{} -\frac{p-1}{\sqrt{p(p-1)}} \end{array} \right] . \end{aligned}$$
(26)

Appendix B: Helmert Transformed Normal Random Variables

Consider a multivariate normally distributed random variable \(\mathbf {z}_i=(z_{i1},\ldots ,z_{ip})^t \sim \mathcal {N}\left( \mu \mathbf 1 _p,\varvec{\Sigma }\right) \), where the covariance matrix has a compound symmetry structure represented by \(\varvec{\Sigma }=\sigma ^2 \mathbf {I}_p + \tau \mathbf {J}_p\). The \(\mathbf {z}_i\) are transformed using Helmert, and the transformed variable is given by \(\tilde{\mathbf {z}}_i=\mathbf {H}\mathbf {z}_i\). The components of the transformed variable \(\tilde{\mathbf {z}}_i\) are independently normally distributed. The first component of the Helmert transformed variable, \(\tilde{z}_{i1}\), is normally distributed with mean and variance equal to,

$$\begin{aligned} E\left( \tilde{z}_{i1}\right)= & {} E\left( \sqrt{p}\bar{z}_i\right) = \sqrt{p}E\left( \sum {z}_{ij}/p\right) = \sqrt{p}\mu \\ { Var}\left( \tilde{z}_{i1}\right)= & {} { Var}\left( \sqrt{p}\bar{z}_i\right) = p { Var}\left( \bar{z}_i\right) = { Var}\left( \sum _{j=1}^{p} z_{ij}\right) /p \\= & {} \left[ \sum _{j=1}^p \left( \sigma ^2+\tau \right) + \sum _{k=1}^p\sum _{j\ne k} \tau \right] /p \\= & {} \left[ p(\sigma ^2+\tau ) + p(p-1)\tau \right] /p = \sigma ^2 + p\tau , \end{aligned}$$

respectively.

Consider a sample \(\mathbf {z} = \left( \mathbf {z}^t_{1},\ldots ,\mathbf {z}^t_{n}\right) ^t\), where the components are identically and independently multivariate normally distributed. Subsequently, let \(\lambda = \sigma ^2 + p\tau \), the probability density function of the first Helmert transformed component, \(\tilde{\mathbf {z}}_{1}\), is given by

$$\begin{aligned} p\left( \tilde{\mathbf {z}}_{1} \mid \mu , \lambda \right)= & {} \left( 2\pi \lambda \right) ^{-n/2}\exp \left( \frac{-\sum _i \left( \tilde{z}_{i1} - \mu \sqrt{p}\right) ^2/2}{\lambda } \right) \\= & {} \left( 2\pi \lambda \right) ^{-n/2}\exp \left( \frac{-p\sum _i\left( \overline{z}_i - \mu \right) ^2/2}{\lambda } \right) \\= & {} \left( 2\pi \lambda \right) ^{-n/2} \exp \left( \frac{-p S^2_B/2}{\lambda } \right) , \end{aligned}$$

where \(S^2_B = \sum _i\left( \overline{z}_i - \mu \right) ^2\). The probability density function of the \(\tilde{\mathbf {z}}_{1}\) can be expressed as the density of \(\overline{\mathbf {z}}_i\) given \(\sigma ^2\) and \(\tau \). It follows that

$$\begin{aligned} p\left( \overline{z}_1,\ldots ,\overline{z}_n \mid \sigma ^2,\tau ,\mu \right)= & {} \left( 2\pi (\sigma ^2 + p\tau )\right) ^{-n/2}\exp \left( \frac{-pS^2_B/2}{\sigma ^2 + p\tau } \right) \\= & {} (2\pi p)^{-n/2}\left( \sigma ^2/p + \tau )\right) ^{-n/2}\exp \left( \frac{-S^2_B/2}{\sigma ^2/p + \tau } \right) , \end{aligned}$$

where \(\tau > \sigma ^2/p\), since \(\lambda = \sigma ^2 + p\tau > 0\) when considering \(\sigma ^2\) a constant.

The remaining \(n(p-1)\) components \(\left( \tilde{\mathbf {z}}_{2},\ldots ,\tilde{\mathbf {z}}_{p}\right) \) are distributed according to

$$\begin{aligned} p\left( \tilde{\mathbf {z}}_{2},\ldots ,\tilde{\mathbf {z}}_{p} \mid \mu ,\sigma ^2 \right)= & {} \left( 2\pi \sigma ^2\right) ^{-n(p-1)/2} \exp \left( \frac{-\sum _{i=1}^n\sum _{j=2}^p \tilde{z}_{ij}^2}{2\sigma ^2} \right) \\= & {} \left( 2\pi \sigma ^2\right) ^{-n(p-1)/2} \exp \left( \frac{-S^2_W}{2\sigma ^2} \right) \end{aligned}$$

where \(S^2_W = \sum _{i=1}^{n}\sum _{j=2}^{p}\tilde{z}_{ij}^2 = \sum _{i=1}^{n}\sum _{j=1}^{p}\left( z_{ij} -\overline{z}_i\right) ^2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, JP., Mulder, J. & Sinharay, S. Bayes Factor Covariance Testing in Item Response Models. Psychometrika 82, 979–1006 (2017). https://doi.org/10.1007/s11336-017-9577-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-017-9577-6

Keywords

Navigation