Skip to main content

Advertisement

Log in

An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

It is shown that a unidimensional monotone latent variable model for binary items implies a restriction on the relative sizes of item correlations: The negative logarithm of the correlations satisfies the triangle inequality. This inequality is not implied by the condition that the correlations are nonnegative, the criterion that coefficient H exceeds 0.30, or manifest monotonicity. The inequality implies both a lower bound and an upper bound for each correlation between two items, based on the correlations of those two items with every possible third item. It is discussed how this can be used in Mokken’s (A theory and procedure of scale-analysis, Mouton, The Hague, 1971) scale analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Baba, K., Shibata, R., & Sibuya, M. (2004). Partial correlation and conditional correlation as measures of conditional independence. Australian & New Zealand Journal of Statistics, 46, 657–664.

    Article  Google Scholar 

  • Bartolucci, F., & Forcina, A. (2000). A likelihood ratio test for MTP2 within binary variables. The Annals of Statistics, 28, 1206–1218.

    Article  Google Scholar 

  • Bartolucci, F., & Forcina, A. (2005). Likelihood inference on the underlying structure of IRT models. Psychometrika, 70, 31–43.

    Article  Google Scholar 

  • Benjamini, Y., Krieger, A.M., & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93, 491–507.

    Article  Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29, 1165–1188.

    Article  Google Scholar 

  • Davenport, E.C. Jr., & El-Sanhurry, N.A. (1991). Phi/Phimax: review and synthesis. Educational and Psychological Measurement, 51, 821–828.

    Article  Google Scholar 

  • De Gooijer, J.G., & Yuan, A. (2011). Some exact tests for manifest properties of latent trait models. Computational Statistics & Data Analysis, 55, 34–44.

    Article  Google Scholar 

  • Ellis, J.L. (1993). Subpopulation invariance of patterns in covariance matrices. British Journal of Mathematical & Statistical Psychology, 46, 231–254.

    Article  Google Scholar 

  • Ellis, J.L., & Junker, B.W. (1997). Tail-measurability in monotone latent variable models. Psychometrika, 62, 495–523.

    Article  Google Scholar 

  • Finner, H., & Gontscharuk, V. (2009). Controlling the familywise error rate with plug-in estimator for the proportion of true null hypotheses. Journal of the Royal Statistical Society. Series B, 71, 1031–1048.

    Article  Google Scholar 

  • Glas, C.A.W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika, 53, 525–546.

    Article  Google Scholar 

  • Guindani, M., Müller, P., & Zhang, S. (2009). A Bayesian discovery procedure. Journal of the Royal Statistical Society. Series B, 71, 905–925.

    Article  Google Scholar 

  • Holland, P.W., & Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 1523–1543.

    Article  Google Scholar 

  • Ip, E.H. (2001). Testing for local dependency in dichotomous and polytomous item response models. Psychometrika, 66, 109–132.

    Article  Google Scholar 

  • Junker, B.W. (1993). Progress in characterizing strictly unidimensional IRT representations. The Annals of Statistics, 21, 1359–1378.

    Article  Google Scholar 

  • Junker, B.W., & Ellis, J.L. (1997). A characterization of monotone unidimensional latent variable models. The Annals of Statistics, 25, 1327–1343.

    Article  Google Scholar 

  • Junker, B.W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models. Applied Psychological Measurement, 24, 65–81.

    Article  Google Scholar 

  • Junker, B.W., & Sijtsma, K. (2001). Nonparametric item response theory in action: an overview of the special issue. Applied Psychological Measurement, 22, 211–220.

    Article  Google Scholar 

  • Lawrance, A.J. (1976). On conditional and partial correlation. American Statistician, 30, 146–149.

    Google Scholar 

  • Liang, K., & Nettleton, D. (2012). Adaptive and dynamic adaptive procedures for false discovery rate control and estimation. Journal of the Royal Statistical Society. Series B, 74, 163–182.

    Article  Google Scholar 

  • Loevinger, J. (1948). The technique of homogeneous tests compared with some aspects of “scale analysis” and factor analysis. Psychological Bulletin, 45, 507–530.

    Article  PubMed  Google Scholar 

  • Maydeu-Olivares, A., & Joe, H. (2005). Limited and full information estimation and goodness-of-fit testing in 2n tables: a unified approach. Journal of the American Statistical Association, 100, 1009–1020.

    Article  Google Scholar 

  • Maydeu-Olivares, A., & Montaño, R. (2013). How should we assess the fit of Rasch-type models? Approximating the power of goodness-of-fit statistics in categorical data analysis. Psychometrika, 78(1), 116–133. doi:10.1007/S11336-012-9293-1.

    Article  Google Scholar 

  • Meinshausen, N., & Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. The Annals of Statistics, 34, 373–393.

    Article  Google Scholar 

  • Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525–543.

    Article  Google Scholar 

  • Meredith, W., & Millsap, R.E. (1992). On the misuse of manifest variables in the detection of measurement bias. Psychometrika, 57, 289–311.

    Article  Google Scholar 

  • Mittal, Y. (1991). Homogeneity of subpopulations and Simpson’s paradox. Journal of the American Statistical Association, 86, 167–172.

    Article  Google Scholar 

  • Mokken, R.J. (1971). A theory and procedure of scale-analysis. The Hague: Mouton.

    Book  Google Scholar 

  • Mokken, R.J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417–430.

    Article  Google Scholar 

  • Molenaar, I.W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows [software manual]. Groningen: iec ProGAMMA.

    Google Scholar 

  • Rosenbaum, P.R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49, 425–435.

    Article  Google Scholar 

  • Scarsini, M., & Spizzichino, F. (1999). Simpson-type paradoxes, dependence, and ageing. Journal of Applied Probability, 36, 119–131.

    Article  Google Scholar 

  • Sijtsma, K., Emons, W.H.M., Bouwmeester, S., Nyklicek, I., & Roorda, L.D. (2008). Nonparametric IRT analysis of quality of life scales and its application to the world health organization quality of life scale (WHOQOL-Bref). Quality of Life Research, 17, 275–290.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sijtsma, K., & Meijer, R.R. (2007). Nonparametric item response theory and special topics. In C.R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 719–746). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Storey, J.D. (2007). The optimal discovery procedure: a new approach to simultaneous significance testing. Journal of the Royal Statistical Society. Series B, 69, 347–368.

    Article  Google Scholar 

  • Stout, W.F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55, 293–325.

    Article  Google Scholar 

  • Stout, W., Habing, B., Douglas, J., Kim, H., Roussos, L., & Zhang, J. (1996). Conditional covariance-based nonparametric multidimensional assessment. Applied Psychological Measurement, 20, 331–354.

    Article  Google Scholar 

  • Ten Holt, J.C., Van Duijn, M.A.J., & Boomsma, A. (2010). Scale construction and evaluation in practice: a review of factor analysis versus item response theory applications. Psychological Test and Assessment Modeling, 52, 272–297.

    Google Scholar 

  • Van der Ark, L.A. (2007). Mokken scale analysis in R. Journal of Statistical Software, 20(11), 1–19. Retrieved from http://www.jstatsoft.org.

    Google Scholar 

  • Van der Ark, L.A. (2012). New developments in Mokken scale analysis in R. Journal of Statistical Software, 48(5), 1–27. Retrieved from http://www.jstatsoft.org.

    Google Scholar 

  • Van der Ark, L.A., Croon, M.A., & Sijtsma, K. (2008). Mokken scale analysis for dichotomous items using marginal models. Psychometrika, 73, 183–208.

    Article  PubMed Central  PubMed  Google Scholar 

  • Van der Ven, A.H.G.S., & Ellis, J.L. (2000). A Rasch analysis of Raven’s standard progressive matrices. Personality and Individual Differences, 29, 45–64.

    Article  Google Scholar 

  • Yuan, A., & Clarke, B. (2001). Manifest characterization and testing for certain latent properties. The Annals of Statistics, 29, 876–898.

    Article  Google Scholar 

  • Yule, G.U. (1903). Notes on the theory of association of attributes in statistics. Biometrika, 2, 121–134.

    Article  Google Scholar 

  • Zhang, J. (2007). Conditional covariance theory and DETECT for polytomous items. Psychometrika, 72, 69–91.

    Article  Google Scholar 

  • Zhang, J., & Stout, W.E. (1999). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64, 213–249.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Ellis Statistical Consultations. The author wishes to thank the Associate Editor for suggesting a more general formulation of the theorems, and to the Editor for his suggestions about the organization of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules L. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J.L. An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables. Psychometrika 79, 303–316 (2014). https://doi.org/10.1007/s11336-013-9341-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9341-5

Key words

Navigation