Skip to main content
Log in

Measuring Growth in a Longitudinal Large-Scale Assessment with a General Latent Variable Model

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The aim of the research presented here is the use of extensions of longitudinal item response theory (IRT) models in the analysis and comparison of group-specific growth in large-scale assessments of educational outcomes.

A general discrete latent variable model was used to specify and compare two types of multidimensional item-response-theory (MIRT) models for longitudinal data: (a) a model that handles repeated measurements as multiple, correlated variables over time and (b) a model that assumes one common variable over time and additional variables that quantify the change. Using extensions of these MIRT models, we approach the issue of modeling and comparing group-specific growth in observed and unobserved subpopulations. The analyses presented in this paper aim at answering the question whether academic growth is homogeneous across types of schools defined by academic demands and curricular differences. In order to facilitate answering this research question, (a) a model with a single two-dimensional ability distribution was compared to (b) a model assuming multiple populations with potentially different two-dimensional ability distributions based on type of school and to (c) a model that assumes that the observations are sampled from a discrete mixture of (unobserved) populations, allowing for differences across schools with respect to mixing proportions. For this purpose, we specified a hierarchical-mixture distribution variant of the two MIRT models. The latter model, (c), is a growth-mixture MIRT model that allows for variation of the mixing proportions across clusters in a hierarchically organized sample. We applied the proposed models to the PISA-I-Plus data for assessing learning and change across multiple subpopulations. The results of this study support the hypothesis of differential growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Andersen, E.B. (1985). Estimating latent correlations between repeated testings. Psychometrika, 50, 3–16.

    Article  Google Scholar 

  • Andrade, D.F., & Tavares, H.R. (2005). Item response theory for longitudinal data: population parameter estimation. Journal of Multivariate Analysis, 95, 1–22.

    Article  Google Scholar 

  • Bock, R.D., & Zimowski, M.F. (1997). Multiple group IRT. In W.J. van der Linden, & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 433–448). New York: Springer.

    Google Scholar 

  • Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika, 75, 33–57.

    Article  Google Scholar 

  • Draney, K., & Wilson, M. (2007). Application of the Saltus model to stage-like data: some applications and current developments. In M. von Davier, & C.H. Carstensen (Eds.), Multivariate and mixture distribution rasch models (pp. 119–130). New York: Springer.

    Chapter  Google Scholar 

  • Embretson, S.E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495–515.

    Article  Google Scholar 

  • Embretson, S.E. (1997). Structured ability models in tests designed from cognitive theory. In M. Wilson, G. Engelhard, Jr., & K. Draney (Eds.), Objective measurement: theory into practice (Vol. 4, pp. 223–236). Greenwich: Ablex.

    Google Scholar 

  • Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.

    Article  Google Scholar 

  • Fischer, G.H. (1976). Some probabilistic models for measuring change. In D.N.M. de Gruijter, & L.J.T. van der Kamp (Eds.), Advances in psychological and educational measurement (pp. 97–110). New York: Wiley.

    Google Scholar 

  • Fischer, G.H. (1995). Some neglected problems in IRT. Psychometrika, 60, 459–487.

    Article  Google Scholar 

  • Fischer, G.H. (2001). Gain scores revisited under an IRT perspective. In A. Boomsma, M.A.J. Van Duijn, & T.A.B. Snijders (Eds.), Essays on item response theory (pp. 43–68). New York: Springer.

    Google Scholar 

  • Gilula, Z., & Haberman, S.J. (2001). Analysis of categorical response profiles by informative summaries. Sociological Methodology, 31, 193–211.

    Article  Google Scholar 

  • Glück, J., & Spiel, C. (1997). Item response models for repeated measures designs: application and limitations of four different approaches. Methods of Psychological Research Online, 2(1), 1–18. Retrieved March 12, 2009, from http://www.dgps.de/fachgruppen/methoden/mpr-online/issue2/art6/article.html.

    Google Scholar 

  • Hsieh, C., Xu, X., & von Davier, M. (2009). Variance estimation for NAEP data using a resampling-based approach: an application of cognitive diagnostic models. In M. von Davier, & D. Hastedt (Eds.), IERI monograph series: Vol. 2. Issues and methodologies in large scale assessments (pp. 161–174). Hamburg/Princeton: IEA-ETS Research Institute.

    Google Scholar 

  • Lord, F.M., & Novick, M.R. (1968). Statistical theories of mental test scores. Reading: Addison-Wesley.

    Google Scholar 

  • Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    Article  Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.

    Book  Google Scholar 

  • Meiser, T., Hein-Eggers, M., Rompe, P., & Rudinger, G. (1995). Analyzing homogeneity and heterogeneity of change using Rasch and latent class models: a comparative and integrative approach. Applied Psychological Measurement, 19(4), 377–391.

    Article  Google Scholar 

  • Mislevy, R.J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177–196.

    Article  Google Scholar 

  • Muraki, E. (1992). A generalized partial credit model: application of an EM algorithm. Applied Psychological Measurement, 16(2), 159–177.

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development (2003). The PISA 2003 assessment framework: mathematics, reading, science and problem solving knowledge and skills. Paris: Author.

  • Organisation for Economic Co-operation and Development (2004). Learning for tomorrow’s world: first results from PISA 2003. Paris: Author.

  • Prenzel, M., Carstensen, C.H., Schöps, K., & Maurischat, C. (2006). Die Anlage des Längsschnitts bei PISA 2003 [The design of the longitudinal PISA assessment]. In M. Prenzel, J. Baumert, W. Blum, R. Lehmann, D. Leutner, M. Neubrand et al. (Eds.), PISA 2003: Untersuchungen zur Kompetenzentwicklung im Verlauf eines Schuljahres [Studies on the development of competencies over the course of a school year] (pp. 29–63). Münster: Waxmann.

    Google Scholar 

  • Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago Press.

    Google Scholar 

  • Rijmen, F. (2009). Efficient full information maximum likelihood estimation for multidimensional IRT models (ETS Research Report No. RR-09-03). Princeton, NJ: ETS.

  • Rijmen, F., de Boeck, P., & Maas, H. (2005). An IRT model with a parameter-driven process for change. Psychometrika, 70, 651–669.

    Article  Google Scholar 

  • Rost, J. (1990). Rasch models in latent classes: an integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Stanovich, K.E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360–407.

    Article  Google Scholar 

  • Vermunt, J.K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213–239.

    Article  Google Scholar 

  • von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report No. RR-05-16). Princeton, NJ: ETS.

  • von Davier, M. (2007a). Mixture general diagnostic models (ETS Research Report No. RR-07-32). ETS: Princeton, NJ.

  • von Davier, M. (2007b). Hierarchical mixtures of diagnostic models (ETS Research Report No. RR-07-19). ETS: Princeton, NJ.

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287–307.

    Article  Google Scholar 

  • von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8–28. Retrieved from http://www.psychologie-aktuell.com/fileadmin/download/ptam/1-2010/02_vonDavier.pdf.

    Google Scholar 

  • von Davier, M., & Rost, J. (1995). Polytomous mixed Rasch models. In G.H. Fischer, & I.W. Molenaar (Eds.), Rasch models: foundations, recent developments, and applications (pp. 371–379). New York: Springer.

    Google Scholar 

  • von Davier, M., & Rost, J. (2006). Mixture distribution item response models. In C.R. Rao, & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 643–661). Amsterdam: Elsevier.

    Google Scholar 

  • von Davier, M., & Sinharay, S. (2007). An importance sampling EM algorithm for latent regression models. Journal of Educational and Behavioral Statistics, 32(3), 233–251.

    Article  Google Scholar 

  • von Davier, M., & Sinharay, S. (2010). Stochastic approximation for latent regression item response models. Journal of Educational and Behavioral Statistics, 35(2), 174–193.

    Article  Google Scholar 

  • von Davier, M., & von Davier, A. (2007). A unified approach to IRT scale linkage and scale transformations. Methodology, 3(3), 115–124.

    Google Scholar 

  • von Davier, M., & Yamamoto, K. (2004). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman invitational conference, October, Philadelphia, PA.

  • von Davier, M., & Yamamoto, K. (2007). Mixture distribution Rasch models and hybrid Rasch models. In M. von Davier, & C.H. Carstensen (Eds.), Multivariate and mixture distribution rasch models (pp. 99–115). New York: Springer.

    Chapter  Google Scholar 

  • Walberg, H.J., & Tsai, S.-L. (1983). Matthew effects in education. American Educational Research Journal, 20, 359–373.

    Google Scholar 

  • Wilson, M. (1989). Saltus: a psychometric model for discontinuity in cognitive development. Psychological Bulletin, 105, 276–289.

    Article  Google Scholar 

  • Wilson, M., & Draney, K. (1997). Partial credit in a developmental context: the case for adopting a mixture model approach. In M. Wilson, G. Engelhard, Jr., & K. Draney (Eds.), Objective measurement: theory into practice (Vol. 4, pp. 333–350). Greenwich: Ablex.

    Google Scholar 

  • Xu, X., & von Davier, M. (2006). Cognitive diagnosis for NAEP proficiency data (ETS Research Report No. RR-06-08). Princeton, NJ: ETS.

  • Xu, X., & von Davier, M. (2008). Comparing multiple-group multinomial loglinear models for multidimensional skill distributions in the general diagnostic model (ETS Research Report No. RR-08-35). Princeton, NJ: ETS.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias von Davier.

Additional information

Any opinions expressed in this paper are those of the author(s) and not necessarily of Educational Testing Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Davier, M., Xu, X. & Carstensen, C.H. Measuring Growth in a Longitudinal Large-Scale Assessment with a General Latent Variable Model. Psychometrika 76, 318–336 (2011). https://doi.org/10.1007/s11336-011-9202-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-011-9202-z

Keywords

Navigation