Skip to main content
Log in

The CHIC Model: A Global Model for Coupled Binary Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Often problems result in the collection of coupled data, which consist of different N-way N-mode data blocks that have one or more modes in common. To reveal the structure underlying such data, an integrated modeling strategy, with a single set of parameters for the common mode(s), that is estimated based on the information in all data blocks, may be most appropriate. Such a strategy implies a global model, consisting of different N-way N-mode submodels, and a global loss function that is a (weighted) sum of the partial loss functions associated with the different submodels. In this paper, such a global model for an integrated analysis of a three-way three-mode binary data array and a two-way two-mode binary data matrix that have one mode in common is presented. A simulated annealing algorithm to estimate the model parameters is described and evaluated in a simulation study. An application of the model to real psychological data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E.H.L., Korst, J.H.M., & Van Laarhoven, P.J.M. (1997). Simulated annealing. In E.H.L. Aarts & J.K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 91–120). Chichester: Wiley.

    Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Academiai Kiado.

    Google Scholar 

  • Barbut, M., & Monjardet, B. (1970). Ordre et classification: algèbre et combinatoire. Paris: Hachette.

    Google Scholar 

  • Birkhoff, G. (1940). Lattice theory. Providence: American Mathematical Society.

    Google Scholar 

  • Boqué, R., & Smilde, A.K. (1999). Monitoring and diagnosing batch processes with multiway covariates regression models. AIChE Journal, 45, 1504–1520.

    Article  Google Scholar 

  • Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika, 52, 345–370.

    Article  Google Scholar 

  • Bozdogan, H. (2000). Akaike’s information criterion and recent developments in informational complexity. Journal of Mathematical Psychology, 44, 62–91.

    Article  PubMed  Google Scholar 

  • Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika, 35, 283–319.

    Article  Google Scholar 

  • Cattell, R.B. (1966). The meaning and strategic use of factor analysis. In R.B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 174–243). Chicago: Rand McNally.

    Google Scholar 

  • Ceulemans, E., & Van Mechelen, I. (2004). Tucker2 hierarchical classes analysis. Psychometrika, 69, 375–399.

    Article  Google Scholar 

  • Ceulemans, E., & Van Mechelen, I. (2005). Hierarchical classes models for three-way three-mode binary data: interrelations and model selection. Psychometrika, 70, 461–480.

    Article  Google Scholar 

  • Ceulemans, E., Van Mechelen, I., & Leenen, I. (2003). Tucker3 hierarchical classes analysis. Psychometrika, 68, 413–433.

    Article  Google Scholar 

  • Ceulemans, E., Van Mechelen, I., & Leenen, I. (2007). The local minima problem in hierarchical classes analysis: An evaluation of a simulated annealing algorithm and various multistart procedures. Psychometrika, 72, 377–391.

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.

    Article  Google Scholar 

  • Coxe, K.L. (1986). Principal components regression analysis. In N.L. Johnson & S. Kotz (Eds.), Encyclopedia of statistical science (Vol. 7, pp. 181–186). New York: Wiley.

    Google Scholar 

  • De Boeck, P., & Rosenberg, S. (1988). Hierarchical classes: model & data analysis. Psychometrika, 53, 361–381.

    Article  Google Scholar 

  • Gati, I., & Tversky, A. (1982). Representations of qualitative and quantitative dimensions. Journal of Experimental Psychology: Human Perception and Performance, 8, 325–340.

    Article  PubMed  Google Scholar 

  • Harshman, R.A. (1970). Foundations of the parafac procedure: models and conditions for an explanatory multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 1–84.

    Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D. Jr., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  PubMed  Google Scholar 

  • Leenen, I., & Van Mechelen, I. (2001). An evaluation of two algorithms for hierarchical classes analysis. Journal of Classification, 18, 57–80.

    Article  Google Scholar 

  • Leenen, I., Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1999). indclas: A three-way hierarchical classes model. Psychometrika, 64, 9–24.

    Article  Google Scholar 

  • McKenzie, D.M., Clarke, D.M., & Low, L.H. (1992). A method of constructing parsimonious diagnostic and screening tests. International Journal of Methods in Psychiatric Research, 2, 71–79.

    Google Scholar 

  • Smilde, A.K., & Kiers, H.A.L. (1999). Multiway covariates regression models. Journal of Chemometrics, 13, 31–48.

    Article  Google Scholar 

  • Smilde, A.K., Westerhuis, J.A., & Boqué, R. (2000). Multiway multiblock component and covariates regression models. Journal of Chemometrics, 14, 301–331.

    Article  Google Scholar 

  • Ten Berge, J.M.F. (1986). Rotation to perfect congruence and the cross-validation of component weights across populations. Multivariate Behavioral Research, 21, 41–64.

    Article  Google Scholar 

  • Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1995). The conjunctive model of hierarchical classes. Psychometrika, 60, 505–521.

    Article  Google Scholar 

  • Van Mechelen, I., Lombardi, L., & Ceulemans, E. (2007). Hierarchical classes modeling of rating data. Psychometrika, 72, 475–488.

    Article  Google Scholar 

  • Vansteelandt, K., & Van Mechelen, I. (1998). Individual differences in situation-behavior profiles: a triple typology model. Journal of Personality and Social Psychology, 75, 751–765.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Wilderjans.

Additional information

T. Wilderjans is a Research Assistant of the Fund for Scientific Research—Flanders (Belgium). The research reported in this paper was partially supported by the Research Council of K.U. Leuven (GOA/2005/04). We are grateful to Kristof Vansteelandt for providing us with an interesting data set. We also thank three anonymous reviewers for their useful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilderjans, T., Ceulemans, E. & Van Mechelen, I. The CHIC Model: A Global Model for Coupled Binary Data. Psychometrika 73, 729–751 (2008). https://doi.org/10.1007/s11336-008-9069-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-008-9069-9

Keywords

Navigation