Skip to main content
Log in

Regularized Multiple-Set Canonical Correlation Analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Multiple-set canonical correlation analysis (Generalized CANO or GCANO for short) is an important technique because it subsumes a number of interesting multivariate data analysis techniques as special cases. More recently, it has also been recognized as an important technique for integrating information from multiple sources. In this paper, we present a simple regularization technique for GCANO and demonstrate its usefulness. Regularization is deemed important as a way of supplementing insufficient data by prior knowledge, and/or of incorporating certain desirable properties in the estimates of parameters in the model. Implications of regularized GCANO for multiple correspondence analysis are also discussed. Examples are given to illustrate the use of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdi, H. (2007). Singular value decomposition (SVD) and generalized singular decomposition (GSVD). In N.J. Salkind (Ed.), Encyclopedia of measurement and statistics (pp. 907–12). Thousand Oak: Sage.

    Google Scholar 

  • Abdi, H., & Valentin, D. (2007). The STATIS method. In N.J. Salkind (Ed.), Encyclopedia of measurement and statistics (pp. 955–962). Thousand Oaks: Sage.

    Google Scholar 

  • Adachi, K. (2002). Homogeneity and smoothness analysis for quantifying a longitudinal categorical variable. In S. Nishisato, Y. Baba, H. Bozdogan, & K. Kanefuji (Eds.), Measurement and multivariate analysis (pp. 47–56). Tokyo: Springer.

    Google Scholar 

  • Beck, A. (1996). BDI-II. San Antonio: Psychological Corporation.

    Google Scholar 

  • Carroll, J.D. (1968). A generalization of canonical correlation analysis to three or more sets of variables. In Proceedings of the 76th annual convention of the American psychological association (pp. 227–228).

  • Dahl, T., & Næs, T. (2006). A bridge between Tucker-1 and Carroll’s generalized canonical analysis. Computational Statistics and Data Analysis, 50, 3086–3098.

    Article  Google Scholar 

  • de Leeuw, J. (1982). Generalized eigenvalue problems with posivite semi-definite matrices. Psychometrika, 47, 87–93.

    Article  Google Scholar 

  • Devaux, M.-F., Courcoux, P., Vigneau, E., & Novales, B. (1998). Generalized canonical correlation analysis for the interpretation of fluorescence spectral data. Analusis, 26, 310–316.

    Article  Google Scholar 

  • DiPillo, P.J. (1976). The application of bias to discriminant analysis. Communications in Statistics—Theory and Methods, 5, 843–859.

    Article  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.

    Article  Google Scholar 

  • Fischer, B., Ross, V., & Buhmann, J.M. (2007). Time-series alignment by non-negative multiple generalized canonical correlation analysis. In F. Massuli & S. Mitra (Eds.), Applications of fuzzy set theory (pp. 505–511). Berlin: Springer.

    Chapter  Google Scholar 

  • Friedman, J. (1989). Regularized discriminant analysis. Journal of the American Statistical Association, 84, 165–175.

    Article  Google Scholar 

  • Gardner, S., Gower, J.C., & le Roux, N.J. (2006). A synthesis of canonical variate analysis, generalized canonical correlation and Procrustes analysis. Computational Statistics and Data Analysis, 50, 107–134.

    Article  Google Scholar 

  • Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.

    Google Scholar 

  • Greenacre, M.J. (1984). Theory and applications of correspondence analysis. London: Academic Press.

    Google Scholar 

  • Hoerl, A.F., & Kennard, R.W. (1970). Ridge regression: biased estimation for nonorthgonal problems. Technometrics, 12, 55–67.

    Article  Google Scholar 

  • Horst, P. (1961). Generalized canonical correlations and their applications to experimental data. Journal of Clinical Psychology, 17, 331–347.

    Article  PubMed  Google Scholar 

  • Kroonenberg, P.M. (2008). Applied multiway data analysis. New York: Wiley.

    Book  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: North Holland.

    Google Scholar 

  • Maraun, M., Slaney, K., & Jalava, J. (2005). Dual scaling for the analysis of categorical data. Journal of Personality Assessment, 85, 209–217.

    Article  PubMed  Google Scholar 

  • Meredith, W. (1964). Rotation to achieve factorial invariance. Psychometrika, 29, 187–206.

    Article  Google Scholar 

  • Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978–982.

    Article  PubMed  Google Scholar 

  • Ramsay, J.O., & Silverman, B.W. (2005). Functional data analysis, 2nd edn. New York: Springer.

    Google Scholar 

  • Rao, C.R., & Mitra, S.K. (1971). Generalized inverse of matrices and its applications. New York: Wiley.

    Google Scholar 

  • Smilde, A., Bro, R., & Geladi, P. (2004). Multi-way analysis: applications in the chemical sciences. New York: Wiley.

    Book  Google Scholar 

  • Sun, Q.-S., Heng, P.-A., Jin, Z., & Xia, D.-S. (2005). Face recognition based on generalized canonical correlation analysis. In D.S. Huang, X.-P. Zhang, & G.-B. Huang (Eds.), Advances in intelligent computing (pp. 958–967). Berlin: Springer.

    Chapter  Google Scholar 

  • Takane, Y. (1980). Analysis of categorizing behavior by a quantification method. Behaviormetrika, 8, 75–86.

    Article  Google Scholar 

  • Takane, Y., & Hunter, M.A. (2001). Constrained principal component analysis: a comprehensive theory. Applicable Algebra in Engineering, Communication and Computing, 12, 391–419.

    Article  Google Scholar 

  • Takane, Y., & Hwang, H. (2002). Generalized constrained canonical correlation analysis. Multivariate Behavioral Research, 37, 163–195.

    Article  Google Scholar 

  • Takane, Y., & Hwang, H. (2006). Regularized multiple correspondence analysis. In M.J. Greenacre & J. Blasius (Eds.), Multiple correspondence analysis and related methods (pp. 259–279). London: Chapman and Hall.

    Google Scholar 

  • Takane, Y., & Hwang, H. (2007). Regularized linear and kernel redundancy analysis. Computational Statistics and Data Analysis, 52, 392–405.

    Article  Google Scholar 

  • Takane, Y., & Jung, S. (in press). Regularized partial and/or constrained redundancy analysis. Psychometrika. DOI: 10.1007/s11336-008-9067-y

  • Takane, Y., & Oshima-Takane, Y. (2002). Nonlinear generalized canonical correlation analysis by neural network models. In S. Nishisato, Y. Baba, H. Bozdogan, & K. Kanefuji (Eds.), Measurement and multivariate analysis (pp. 183–190). Tokyo: Springer.

    Google Scholar 

  • Takane, Y., & Yanai, H. (2008). On ridge operators. Linear Algebra and Its Applications, 428, 1778–1790.

    Article  Google Scholar 

  • ten Berge, J.M.F. (1979). On the equivalence of two oblique congruence rotation methods, and orthogonal approximations. Psychometrika, 44, 359–364.

    Article  Google Scholar 

  • ter Braak, C.J.F. (1990). Update notes: CANOCO Version 3.10. Wageningen: Agricultural Mathematics Group.

    Google Scholar 

  • Tikhonov, A.N., & Arsenin, V.Y. (1977). Solutions of ill-posed problems. Washington: Winston.

    Google Scholar 

  • Tillman, B., Dowling, J., & Abdi, H. (2008). Bach, Mozart or Beethoven? Indirect investigations of musical style perception with subjective judgments and sorting tasks. In preparation.

  • van de Velden, M., & Bijmolt, T.H.A. (2006). Generalized canonical correlation analysis of matrices with missing rows: a simulation study. Psychometrika, 71, 323–331.

    Article  Google Scholar 

  • van der Burg, E. (1988). Nonlinear canonical correlation and some related techniques. Leiden: DSWO Press.

    Google Scholar 

  • Vinod, H.D. (1976). Canonical ridge and econometrics of joint production. Journal of Econometrics, 4, 47–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Takane.

Additional information

The work reported in this paper is supported by Grants 10630 and 290439 from the Natural Sciences and Engineering Research Council of Canada to the first and the second authors, respectively. The authors would like to thank the two editors (old and new), the associate editor, and four anonymous reviewers for their insightful comments on earlier versions of this paper. Matlab programs that carried out the computations reported in the paper are available upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takane, Y., Hwang, H. & Abdi, H. Regularized Multiple-Set Canonical Correlation Analysis. Psychometrika 73, 753–775 (2008). https://doi.org/10.1007/s11336-008-9065-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-008-9065-0

Keywords

Navigation