Skip to main content
Log in

Handgrip strength adjusted for body mass and stratified by age and sex: normative data for healthy Brazilian adults based on a systematic review

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The literature has indicated that handgrip strength (HGS) seems to be associated with nutritional and health status. However, normative HGS data are usually neglecting the importance of considering body mass (BM). The objective of this study is to provide normative data of HGS adjusted for BM of healthy Brazilian aged 20–60 from a systematic review.

Methods

Searches were performed in the MEDLINE and Scopus databases to identify cross-sectional articles with normative data. Seven studies were selected considering population-representativity.

Results

Five of the selected studies presented high methodological quality, one moderate quality, and only one low quality. Allometric adjustments were applied in absolute values of HGS to remove the BM effect. Handgrip strength data of 3679 men and 3482 women were analyzed. Absolute and relative (adjusted for BM) normative data of HGS were presented according to six age groups. Mean absolute (and relative) values of HGS for men varied between 44.39 kgf (4.44) and 40.37 kgf (3.97), between the younger and older age group, respectively. As for women, mean absolute (and relative) values of HGS varied between 26.73 kgf (3.88) and 22.37 kgf (3.15). Men’s and women’s equations were proposed to estimate expected values of HGS adjusted for BM.

Conclusion

Our results revealed that HGS of Brazilians adult decreases after the fourth and fifth decade of life for men and women. We suggest the use of the proposed equations to remove the BM effect of HGS for the population analyzed, and to improve the efficiency of diagnosis and therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dias JA, Ovando AC, Külkamp W, Borges Junior N (2010) Hand grip strength: evaluation methods and factors influencing this measure. Rev Bras de Cineantropometria e Desempenho Hum 12(3):209–216

    Google Scholar 

  2. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    Article  PubMed  Google Scholar 

  3. Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M (2011) Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr 30(2):135–142

    Article  PubMed  Google Scholar 

  4. Celis-Morales CA, Welsh P, Lyall DM, Steell L, Petermann F, Anderson J, Iliodromiti S, Sillars A, Graham N, Mackay DF, Pell JP, Gill J, Sattar N, Gray SR (2018) Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ 361:k1651

    PubMed  PubMed Central  Google Scholar 

  5. Sayer AA, Kirkwood TB (2015) Grip strength and mortality: a biomarker of ageing? Lancet 386(9990):226–227

    Article  PubMed  Google Scholar 

  6. Cheung CL, Nguyen US, Au E, Tan KC, Kung AW (2013) Association of handgrip strength with chronic diseases and multimorbidity: a cross-sectional study. Age 35(3):929–941

    Article  PubMed  Google Scholar 

  7. Sayer AA, Robinson SM, Patel HP, Shavlakadze T, Cooper C, Grounds MD (2013) New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age Ageing 42(2):145–150

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sousa-Santos AR, Amaral TF (2017) Differences in handgrip strength protocols to identify sarcopenia and frailty—a systematic review. BMC Geriatr 17(1):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beumer A, Lindau TR (2014) Grip strength ratio: a grip strength measurement that correlates well with DASH score in different hand/wrist conditions. BMC Musculoskelet Disord 15:336

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carson RG (2018) Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol aging 71:189–222

    Article  PubMed  Google Scholar 

  11. Josty IC, Tyler MP, Shewell PC, Roberts AH (1997) Grip and pinch strength variations in different types of workers. J Hand Surg Br 22(2):266–269

    Article  CAS  PubMed  Google Scholar 

  12. Ache Dias J, Wentz M, Külkamp W, Mattos D, Goethel M, Borges Júnior N (2012) Is the handgrip strength performance better in judokas than in non-judokas? Sci Sports 27(3):e9–e14

    Article  Google Scholar 

  13. Külkamp W, Ache-Dias J, Kons RL, Detanico D, Dal Pupo J (2020) The ratio standard is not adequate for scaling handgrip strength in judo athletes and nonathletes. J Exerc Rehabil 16(2):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  14. Amaral CA, Amaral T, Monteiro G, Vasconcellos M, Portela MC (2019) Hand grip strength: reference values for adults and elderly people of Rio Branco, Acre, Brazil. PLoS ONE 14(1):e0211452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bohannon R, Peolsson A, Massy-Westropp N, Desrosiers J, Bear-Lehman J (2006) Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy 92(1):11–15

    Article  Google Scholar 

  16. Caporrino FA, Faloppa F, dos Santos JBG, Réssio C, Soares FHC, Nakachima LR, Segre NG (1998) Populational study of the grip force with Jamar dynamometer. Rev Bras Ortop (Sao Paulo) 33:150–154

    Google Scholar 

  17. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, Der G, Gale CR, Inskip HM, Jagger C, Kirkwood TB, Lawlor DA, Robinson SM, Starr JM, Steptoe A, Tilling K, Kuh D, Cooper C, Sayer AA (2014) Grip strength across the life course: normative data from twelve British studies. PLoS ONE 9(12):e113637

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dodds RM, Syddall HE, Cooper R, Kuh D, Cooper C, Sayer AA (2016) Global variation in grip strength: a systematic review and meta-analysis of normative data. Age Ageing 45(2):209–216

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fernandes AA, Natali A, Vieira B, Valle M, Gomes Moreira D, Massy-Westropp N, Marins J (2014) The relationship between hand grip strength and anthropometric parameters in men. Arch de Medicina del Deporte 31(3):160–164

    Google Scholar 

  20. Leong DP, Teo KK, Rangarajan S et al (2016) Reference ranges of handgrip strength from 125,462 healthy adults in 21 countries: a prospective urban rural epidemiologic (PURE) study. J Cachexia Sarcopenia Muscle 7(5):535–546

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lera L, Albala C, Leyton B, Márquez C, Angel B, Saguez R, Sánchez H (2018) Reference values of hand-grip dynamometry and the relationship between low strength and mortality in older Chileans. Clin Interv Aging 13:317–324

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schlüssel MM, dos Anjos LA, de Vasconcellos MT, Kac G (2008) Reference values of handgrip dynamometry of healthy adults: a population-based study. Clin Nutr 27(4):601–607

    Article  PubMed  Google Scholar 

  23. Spruit MA, Sillen MJ, Groenen MT, Wouters EF, Franssen FM (2013) New normative values for handgrip strength: results from the UK Biobank. J Am Med Dir Assoc 14(10):775.e5–11

    Article  Google Scholar 

  24. Steiber N (2016) Strong or weak handgrip? Normative reference values for the German population across the life course stratified by sex, age, and body height. PLoS ONE 11(10):e0163917

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vianna LC, Oliveira RB, Araújo CG (2007) Age-related decline in handgrip strength differs according to gender. J Strength Cond Res 21(4):1310–1314

    PubMed  Google Scholar 

  26. Markovic G, Jaric S (2004) Movement performance and body size: the relationship for different groups of tests. Eur J Appl Physiol 92(1–2):139–149

    Article  PubMed  Google Scholar 

  27. Nevill AM, Bate S, Holder RL (2005) Modeling physiological and anthropometric variables known to vary with body size and other confounding variables. Am J Phys Anthropol Suppl 41:141–153

    Article  Google Scholar 

  28. Jaric S, Mirkov D, Markovic G (2005) Normalizing physical performance tests for body size: a proposal for standardization. J Strength Cond Res 19(2):467–474

    PubMed  Google Scholar 

  29. Pua YH (2006) Allometric analysis of physical performance measures in older adults. Phys Ther 86(9):1263–1270

    Article  PubMed  Google Scholar 

  30. Vanderburgh PM, Mahar MT, Chou CH (1995) Allometric scaling of grip strength by body mass in college-age men and women. Res Q Exerc Sport 66(1):80–84

    Article  CAS  PubMed  Google Scholar 

  31. McGrath R, Clark BC, Cesari M, Johnson C, Jurivich DA (2021) Handgrip strength asymmetry is associated with future falls in older Americans. Aging Clin Exp Res 33(9):2461–2469

    Article  PubMed  Google Scholar 

  32. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brown SR, Brughelli M, Hume PA (2014) Knee mechanics during planned and unplanned sidestepping: a systematic review and meta-analysis. Sports Med 44(11):1573–1588

    Article  PubMed  Google Scholar 

  34. Budziareck MB, Pureza Duarte RR, Barbosa-Silva MC (2008) Reference values and determinants for handgrip strength in healthy subjects. Clin Nutr 27(3):357–362

    Article  PubMed  Google Scholar 

  35. De Souza CF, Vieira MCA, do Nascimento RA, Moreira MA, da Câmara SMA, Maciel ACC (2017) Relationship between strength and muscle mass in middle-aged and elderly women: a cross-sectional study. Rev Bras Geriatr Gerontol 20(5):660–669

    Article  Google Scholar 

  36. Ivanović J, Dopsaj M (2012) Functional dimorphism and characteristics of maximal hand grip force in top level female athletes. Coll Antropol 36(4):1231–1240

    PubMed  Google Scholar 

  37. Balogun J, Onigbinde A (1991) Intratester reliability and validity of the Takei Kiki Kogyo hand grip dynamometer. J Phys Ther Sci 3:55–60

    Google Scholar 

  38. Hamilton GF, McDonald C, Chenier TC (1992) Measurement of grip strength: validity and reliability of the sphygmomanometer and jamar grip dynamometer. J Orthop Sports Phys Ther 16(5):215–219

    Article  CAS  PubMed  Google Scholar 

  39. Reis MM, Arantes PMM (2011) Assessment of hand grip strength: validity and reliability of the saehan dynamometer. Fisioter Pesqui 18(2):176–181

    Article  Google Scholar 

  40. Bonate PL (2001) A brief introduction to Monte Carlo simulation. Clin Pharmacokinet 40(1):15–22

    Article  CAS  PubMed  Google Scholar 

  41. Cohen J (1988) Statistical power analysis for the behavioral sciences. Hillsdale, NJ

  42. Nevill AM, Tomkinson GR, Lang JJ, Wutz W, Myers TD (2021) How should adult handgrip strength be normalized? Allometry reveals new insights and associated reference curves. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000002771

    Article  PubMed  Google Scholar 

  43. Folland JP, Mc Cauley TM, Williams AG (2008) Allometric scaling of strength measurements to body size. Eur J Appl Physiol 102(6):739–745

    Article  CAS  PubMed  Google Scholar 

  44. Maranhao Neto GA, Oliveira AJ, Pedreiro RC, Pereira-Junior PP, Machado S, Marques Neto S, Farinatti PT (2017) Normalizing handgrip strength in older adults: an allometric approach. Arch Gerontol Geriatr 70:230–234

    Article  PubMed  Google Scholar 

  45. Abdalla PP, Dos Santos Carvalho A, Dos Santos AP, Venturini A, Alves TC, Mota J, de Sousa Oliveira A, Ramos NC, Marini J, Machado D (2020) Cut-off points of knee extension strength allometrically adjusted to identify sarcopenia risk in older adults: a cross-sectional study. Arch Gerontol Geriatr 89:104100

    Article  PubMed  Google Scholar 

  46. Külkamp W, Borges Junior NG, Ache Dias J, Domenech SC, Sagawa Junior Y, Gevaerd MS (2015) Modeling the influence of body mass on resistance exercise performance of non-athletes. Sci Sports 30(5):275–282

    Article  Google Scholar 

  47. Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S (2001) Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes Relat Metab Disord 25(5):676–681

    Article  CAS  PubMed  Google Scholar 

  48. Hui D, Jackson RB (2007) Uncertainty in allometric exponent estimation: a case study in scaling metabolic rate with body mass. J Theor Biol 249(1):168–177

    Article  PubMed  Google Scholar 

  49. Foley KT, Owings TM, Pavol MJ, Grabiner MD (1999) Maximum grip strength is not related to bone mineral density of the proximal femur in older adults. Calcif Tissue Int 64(4):291–294

    Article  CAS  PubMed  Google Scholar 

  50. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20(1):49–64

    Article  CAS  PubMed  Google Scholar 

  51. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C (2007) Physical activity and public health in older adults: recommendation from the american college of sports medicine and the american heart association. Med Sci Sports Exerc 39(8):1435–1445

    Article  PubMed  Google Scholar 

  52. Guizelini PC, De Aguiar RA, Denadai BS, Caputo F, Greco CC (2018) Effect of resistance training on muscle strength and rate of force development in healthy older adults: a systematic review and meta-analysis. Exp Gerontol 102:51–58

    Article  PubMed  Google Scholar 

  53. Lee K (2020) Metabolic syndrome and weight status may modify the inverse association between handgrip strength and C-reactive protein in Korean adults. Nutr Res 74:37–44

    Article  CAS  PubMed  Google Scholar 

  54. Nicolay CW, Walker AL (2005) Grip strength and endurance: influences of anthropometric variation, hand dominance, and gender. Int J Ind Ergonom 35(7):605–618

    Article  Google Scholar 

  55. Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL (2011) Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC Res Notes 4:127

    Article  PubMed  PubMed Central  Google Scholar 

  56. Massuda A, Hone T, Leles FAG, de Castro MC, Atun R (2018) The Brazilian health system at crossroads: progress, crisis and resilience. BMJ Glob Health 3:e000829

  57. Bohannon RW, Magasi S (2015) Identification of dynapenia in older adults through the use of grip strength t-scores. Muscle nerve 51(1):102–105

    Article  PubMed  Google Scholar 

  58. Jaric S, Radosavljevic-Jaric S, Johansson H (2002) Muscle force and muscle torque in humans require different methods when adjusting for differences in body size. Eur J Appl Physiol 87(3):304–307

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any grant or financial support.

Author information

Authors and Affiliations

Authors

Contributions

WK was responsible by conception, design, text writing, search strategy, data analysis and interpretation, statistical analysis, and critical revision. JAD and JDP was responsible by design, search strategy, search in data bases, text writing, data analysis and interpretation, drawing up the figures, and critical revision.

Corresponding author

Correspondence to Jonathan Ache-Dias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Külkamp, W., Ache-Dias, J. & Dal Pupo, J. Handgrip strength adjusted for body mass and stratified by age and sex: normative data for healthy Brazilian adults based on a systematic review. Sport Sci Health 18, 1149–1160 (2022). https://doi.org/10.1007/s11332-022-00916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-022-00916-1

Keywords

Navigation