Skip to main content

Advertisement

Log in

Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Overtraining is well known to cause oxidative stress-related apoptosis. However, it also can cause serum protease activity elevation. On the other hand, p16INK4α regulates kidney aging and apoptosis. Hitherto, no studies have determined the relation of overtraining with protease activity and p16INK4α expression regarding kidney apoptosis.

Aims

The aim of this study was to determine the effects of overtraining on serum protease activity and renal p16INK4α expression, as well as its relation to renal apoptosis in Wistar rats.

Methods

Thirty experimentally naive male Wistar albino rats (2.5–3 months old, weighing 150–200 g) were divided randomly into three groups: control (C) group (n = 10, without any training program), trained (T) group (n = 10, 30 min of swimming, 3 times a week for 3 weeks) and overtrained (OT) group (n = 10, 60 min of swimming, 7 times a week for 3 weeks).

Results

Overtraining increased MDA levels in OT group compare to C and T groups (p < 0.01). We showed that the OT group has a higher serum protease enzyme activity (p < 0.01) and p16INK4α mRNA (p < 0.01) than both C group and T group. In addition, no apoptotic cell was observed in kidneys isolated from the C group, while it was observed in both T and OT groups. There was a positive correlation between the serum protease enzyme activity (r = 0.867; p < 0.01) and p16INK4α mRNA level (r = 0.514; p < 0.01) with the apoptosis in the renal cells.

Conclusions

In summary, our result indicated that overtraining elevates serum protease level, increases renal p16INK4α expression and induces apoptosis in rat kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Urhausen A, Kindermann W (2002) Diagnosis of overtraining: what tools do we have? Sports Med 32:95–102

    Article  PubMed  Google Scholar 

  2. Kreher JB, Schwartz JB (2012) Overtraining syndrome. Sport Heal A Multidiscip Approach 4:128–138. https://doi.org/10.1177/1941738111434406

    Article  Google Scholar 

  3. Halson SL, Jeukendrup AE (2004) Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 34:967–981

    Article  PubMed  Google Scholar 

  4. Mastaloudis A, Morrow JD, Hopkins DW et al (2004) Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med 36:1329–1341. https://doi.org/10.1016/j.freeradbiomed.2004.02.069

    Article  PubMed  CAS  Google Scholar 

  5. Scharhag J (2005) Does prolonged cycling of moderate intensity affect immune cell function? *Commentary. Br J Sports Med 39:171–177. https://doi.org/10.1136/bjsm.2004.013060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sugiura H, Nishida H, Sugiura H, Mirbod SM (2002) Immunomodulatory action of chronic exercise on macrophage and lymphocyte cytokine production in mice. Acta Physiol Scand 174:247–256. https://doi.org/10.1046/j.1365-201x.2002.00930.x

    Article  PubMed  CAS  Google Scholar 

  7. Nigro E, Sangiorgio D, Scudiero O et al (2016) Gene molecular analysis and adiponectin expression in professional Water Polo players. Cytokine 81:88–93. https://doi.org/10.1016/j.cyto.2016.03.002

    Article  PubMed  CAS  Google Scholar 

  8. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7:436–448. https://doi.org/10.1038/nrg1871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lin X, Jiang C, Luo Z, Qu S (2013) Protective effect of erythropoietin on renal injury induced in rats by four weeks of exhaustive exercise. BMC Nephrol 14:130. https://doi.org/10.1186/1471-2369-14-130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mansour SG, Verma G, Pata RW et al (2017) Kidney injury and repair biomarkers in marathon runners. Am J Kidney Dis 70:252–261. https://doi.org/10.1053/j.ajkd.2017.01.045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Lombardi G, Colombini A, Porcelli S et al (2014) Muscular damage and kidney function in rugby players after daily whole body cryostimulation. Physiol J 2014:1–7. https://doi.org/10.1155/2014/790540

    Article  CAS  Google Scholar 

  12. Zhou XJ, Rakheja D, Yu X et al (2008) The aging kidney. Kidney Int 74:710–720. https://doi.org/10.1038/ki.2008.319

    Article  PubMed  CAS  Google Scholar 

  13. Weinstein JR, Anderson S (2010) The aging kidney: physiological changes. Adv Chronic Kidney Dis 17:302–307. https://doi.org/10.1053/j.ackd.2010.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolke C, Teumer A, Endlich K et al (2017) Serum protease activity in chronic kidney disease patients: the GANI_MED renal cohort. Exp Biol Med 242:554–563. https://doi.org/10.1177/1535370216684040

    Article  CAS  Google Scholar 

  15. Melk A (2003) Senescence of renal cells: molecular basis and clinical implications. Nephrol Dial Transplant 18:2474–2478

    Article  PubMed  CAS  Google Scholar 

  16. Chkhotua AB, Gabusi E, Altimari A et al (2003) Increased expression of p16(INK4a) and p27(Kip1) cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am J Kidney Dis 41:1303–1313

    Article  PubMed  CAS  Google Scholar 

  17. Krishnamurthy J, Torrice C, Ramsey MR et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Investig 114:1299–1307. https://doi.org/10.1172/JCI22475

    Article  PubMed  CAS  Google Scholar 

  18. Melk A, Schmidt BMW, Takeuchi O et al (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 65:510–520. https://doi.org/10.1111/j.1523-1755.2004.00438.x

    Article  PubMed  CAS  Google Scholar 

  19. Plath T, Detjen K, Welzel M et al (2000) A novel function for the tumor suppressor p16(INK4a): induction of anoikis via upregulation of the α5β1 fibronectin receptor. J Cell Biol 150:1467–1477. https://doi.org/10.1083/jcb.150.6.1467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826. https://doi.org/10.1038/nrm1490

    Article  PubMed  CAS  Google Scholar 

  21. Wasowicz W, Nève J, Peretz A (1993) Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage. Clin Chem 39:2522–2526

    PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  23. Tanskanen M, Atalay M, Uusitalo A (2010) Altered oxidative stress in overtrained athletes. J Sports Sci 28:309–317. https://doi.org/10.1080/02640410903473844

    Article  PubMed  Google Scholar 

  24. Tyler CM, Golland LC, Evans DL et al (1996) Changes in maximum oxygen uptake during prolonged training, overtraining, and detraining in horses. J Appl Physiol 81:2244–2249

    Article  PubMed  CAS  Google Scholar 

  25. Souza TP Jr, de Oliveira PR, de Pereira B (2005) Exercício físico e estresse oxidativo: efeitos do exercício físico intenso sobre a quimioluminescência urinária e malondialdeído plasmático. Rev Bras Med do Esporte 11:91–96. https://doi.org/10.1590/S1517-86922005000100010

    Article  Google Scholar 

  26. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163. https://doi.org/10.1016/S0928-4680(00)00053-5

    Article  PubMed  CAS  Google Scholar 

  27. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  PubMed  CAS  Google Scholar 

  28. Ishihara Y, Shimamoto N (2006) Involvement of endonuclease G in nucleosomal DNA fragmentation under sustained endogenous oxidative stress. J Biol Chem 281:6726–6733. https://doi.org/10.1074/jbc.M510382200

    Article  PubMed  CAS  Google Scholar 

  29. Krüger K, Agnischock S, Lechtermann A et al (2011) Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. J Appl Physiol 110:1226–1232. https://doi.org/10.1152/japplphysiol.01295.2010

    Article  PubMed  CAS  Google Scholar 

  30. Pereira BC, Pauli JR, Antunes LMG et al (2013) Overtraining is associated with DNA damage in blood and skeletal muscle cells of Swiss mice. BMC Physiol 13:11. https://doi.org/10.1186/1472-6793-13-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gobé G, Rubin M, Williams G et al (2002) Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas. Cancer Investig 20:324–332

    Article  Google Scholar 

  32. Yang B, Johnson TS, Thomas GL et al (2002) A shift in the Bax/Bcl-2 balance may activate caspase-3 and modulate apoptosis in experimental glomerulonephritis. Kidney Int 62:1301–1313. https://doi.org/10.1111/j.1523-1755.2002.kid587.x

    Article  PubMed  CAS  Google Scholar 

  33. Wu B, Cui H, Peng X et al (2014) Dietary nickel chloride induces oxidative stress, apoptosis and alters Bax/Bcl-2 and caspase-3 mRNA expression in the cecal tonsil of broilers. Food Chem Toxicol 63:18–29. https://doi.org/10.1016/j.fct.2013.10.033

    Article  PubMed  CAS  Google Scholar 

  34. Smith LL (2000) Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 32:317–331

    Article  PubMed  CAS  Google Scholar 

  35. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314. https://doi.org/10.1038/cdd.2009.107

    Article  PubMed  CAS  Google Scholar 

  36. Morgan MJ, Liu Z (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115. https://doi.org/10.1038/cr.2010.178

    Article  PubMed  CAS  Google Scholar 

  37. Mashayekhi V, Eskandari MR, Kobarfard F et al (2014) Induction of mitochondrial permeability transition (MPT) pore opening and ROS formation as a mechanism for methamphetamine-induced mitochondrial toxicity. Naunyn Schmiedebergs Arch Pharmacol 387:47–58. https://doi.org/10.1007/s00210-013-0919-3

    Article  PubMed  CAS  Google Scholar 

  38. Radak Z, Marton O, Nagy E et al (2013) The complex role of physical exercise and reactive oxygen species on brain. J Sport Heal Sci 2:87–93. https://doi.org/10.1016/j.jshs.2013.04.001

    Article  Google Scholar 

  39. de Graaf-Roelfsema E, Keizer HA, van Breda E et al (2007) Hormonal responses to acute exercise, training and overtraining. A review with emphasis on the horse. Vet Q 29:82–101. https://doi.org/10.1080/01652176.2007.9695232

    Article  PubMed  Google Scholar 

  40. Hayashi AA, Proud CG (2007) The rapid activation of protein synthesis by growth hormone requires signaling through mTOR. Am J Physiol Endocrinol Metab 292:E1647–E1655. https://doi.org/10.1152/ajpendo.00674.2006

    Article  PubMed  CAS  Google Scholar 

  41. Yoon JB, Towle HC, Seelig S (1987) Growth hormone induces two mRNA species of the serine protease inhibitor gene family in rat liver. J Biol Chem 262:4284–4289

    PubMed  CAS  Google Scholar 

  42. Sliva D, Wood TJ, Schindler C et al (1994) Growth hormone specifically regulates serine protease inhibitor gene transcription via gamma-activated sequence-like DNA elements. J Biol Chem 269:26208–26214

    PubMed  CAS  Google Scholar 

  43. Bergad PL, Shih HM, Towle HC et al (1995) Growth hormone induction of hepatic serine protease inhibitor 2.1 transcription is mediated by a Stat5-related factor binding synergistically to two gamma-activated sites. J Biol Chem 270:24903–24910

    Article  PubMed  CAS  Google Scholar 

  44. Thomas MJ, Gronowski AM, Berry SA et al (1995) Growth hormone rapidly activates rat serine protease inhibitor 2.1 gene transcription and induces a DNA-binding activity distinct from those of Stat1, -3, and -4. Mol Cell Biol 15:12–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Moffitt KL, Martin SL, Walker B (2007) The emerging role of serine proteases in apoptosis. Biochem Soc Trans 35:559–560. https://doi.org/10.1042/BST0350559

    Article  PubMed  CAS  Google Scholar 

  46. Egger L, Schneider J, Rhême C et al (2003) Serine proteases mediate apoptosis-like cell death and phagocytosis under caspase-inhibiting conditions. Cell Death Differ 10:1188–1203. https://doi.org/10.1038/sj.cdd.4401288

    Article  PubMed  CAS  Google Scholar 

  47. Thorburn J (2003) Caspase- and serine protease-dependent apoptosis by the death domain of FADD in normal epithelial cells. Mol Biol Cell 14:67–77. https://doi.org/10.1091/mbc.E02-04-0207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Furman LM, Maaty WS, Petersen LK et al (2009) Cysteine protease activation and apoptosis in Murine norovirus infection. Virol J 6:139. https://doi.org/10.1186/1743-422X-6-139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Luna-Acosta JL, Alba-Betancourt C, Martínez-Moreno CG et al (2015) Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius. Gen Comp Endocrinol 224:148–159. https://doi.org/10.1016/j.ygcen.2015.07.010

    Article  PubMed  CAS  Google Scholar 

  50. Jeay S, Sonenshein GE, Postel-Vinay MC, Baixeras E (2000) Growth hormone prevents apoptosis through activation of nuclear factor-kappaB in interleukin-3-dependent Ba/F3 cell line. Mol Endocrinol 14:650–661. https://doi.org/10.1210/mend.14.5.0462

    Article  PubMed  CAS  Google Scholar 

  51. Ferraresso RLP, Buscariolli de Oliveira R, Macedo DV et al (2012) Interaction between overtraining and the interindividual variability may (not) trigger muscle oxidative stress and cardiomyocyte apoptosis in rats. Oxid Med Cell Longev 2012:1–11. https://doi.org/10.1155/2012/935483

    Article  CAS  Google Scholar 

  52. Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275. https://doi.org/10.1016/j.cell.2006.10.003

    Article  PubMed  CAS  Google Scholar 

  53. Liu Y, Johnson SM, Fedoriw Y et al (2011) Expression of p16INK4a prevents cancer and promotes aging in lymphocytes. Blood 117:3257–3267. https://doi.org/10.1182/blood-2010-09-304402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Romagosa C, Simonetti S, López-Vicente L et al (2011) p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30:2087–2097. https://doi.org/10.1038/onc.2010.614

    Article  PubMed  CAS  Google Scholar 

  55. Qin Y, Liu J, Li B et al (2004) Impact of p16INK4A and p15INK4B on human hepatocellular carcinoma cell proliferation and apoptosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 21:132–137

    PubMed  CAS  Google Scholar 

  56. Carnero A, Hudson JD, Price CM, Beach DH (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2:148–155. https://doi.org/10.1038/35004020

    Article  PubMed  CAS  Google Scholar 

  57. Katsuda K, Kataoka M, Uno F et al (2002) Activation of caspase-3 and cleavage of Rb are associated with p16-mediated apoptosis in human non-small cell lung cancer cells. Oncogene 21:2108–2113. https://doi.org/10.1038/sj.onc.1205272

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferbian Milas Siswanto.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

All procedures performed in studies involving rats as animal models were conducted in accordance with guideline on the welfare of experimental animals and with the approval of the Ethics Committee on the use of animals of Faculty of Veterinary Medicine, Udayana University.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartiko, B.H., Siswanto, F.M. Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. Sport Sci Health 14, 331–337 (2018). https://doi.org/10.1007/s11332-018-0433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-018-0433-6

Keywords

Navigation