Skip to main content
Log in

Muscular glucose metabolism in middle-age trained rats

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Aging decreases the normal organism physiological functions. On the other hand, physical exercise shows health benefits, but little information is known about physical deconditioning at aging. The aim of the present study was to analyze the glucose muscle metabolism in middle-age Wistar rats in response to conditioning and physical deconditioning. The study included three groups: Control (C)—not performed physical training; Trained (T)—performed physical training from 4 to 12 months—swimming exercise for 1 h per day, 5 days per week at 80% of maximal lactate stead state—MLSS; Detrained (D)—performed to physical training from 4 to 8 months and assessed at 12 months (D). Physical training at submaximal intensities induced decreases in body weight (C 588 ± 71, T 515 ± 72, D 576 ± 62 g), and the weight of mesenteric adipose tissue (C 4399 ± 643, T 3007 ± 811, D 4085 ± 540 mg/g), and increases in exercise workload in MLSS intensity (C 4.6 ± 0.4, T 5.8 ± 1.3, D 5.3 ± 0.4% body weight), glucose tolerance (C 12314 ± 1122, T 8428 ± 853, D 9433 ± 1200 mg/dL 120 min), glycogen deposits (C 0.48 ± 0.07, T 0.66 ± 0.18, D 0.46 ± 0.10 mg/100 mg) and glucose uptake by skeletal muscle (C 1.96 ± 0.54, T 3.28 ± 0.53, D 2.55 ± 0.35 μmol/g/h) in trained animals. Additionally, the improvement in exercise load in MLSS, glucose tolerance and glucose uptake was maintained after physical detraining. In summary, the physical training promotes alterations in body weight, fat tissue, aerobic capacity and muscular glucose metabolism in middle-age rats. However, only the aerobic capacity and muscular glucose metabolism were maintained after detraining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VO2max:

Maximum oxygen consumption

MLSS:

Maximum lactate steady state

GLUT:

Glucose transporter

GTT:

Glucose tolerance test

ITT:

Insulin tolerance test

References

  1. Mazur-Bialy AI, Pocheć E (2017) Vitamin B2 deficiency enhances the pro-inflammatory activity of adipocyte, consequences for insulin resistance and metabolic syndrome development. Life Sci 178:9–16

    Article  CAS  PubMed  Google Scholar 

  2. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersen CJ, Murphy KE, Fernandez ML (2016) Impact of obesity and metabolic syndrome on immunity. Adv Nutr 7(1):66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rocha-Rodrigues S, Rodríguez A, Gonçalves IO, Moreira A, Maciel E, Santos S et al (2017) Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen. Int J Biochem Cell Biol 87:114–124

    Article  CAS  PubMed  Google Scholar 

  6. Botezelli JD, Mora RF, Dalia RA, Moura LP, Cambri LT, Ghezzi AC et al (2010) Exercise counteracts fatty liver disease in rats fed on fructose-rich diet. Lipids Health Dis 9:116

    Article  PubMed  PubMed Central  Google Scholar 

  7. Botezelli JD, Cambri LT, Ghezzi AC, Dalia RA, Scariot PP, Ribeiro C et al (2011) Different exercise protocols improve metabolic syndrome markers, tissue triglycerides content and antioxidant status in rats. Diabetol Metab Syndr 3:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu S, Du F, Li X, Wang M, Duan R, Zhang J, Wu Y, Zhang Q (2017) Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells. PLoS One 10:12

    Google Scholar 

  9. Issurin V (2008) Block periodization versus traditional training theory: a review. J Sports Med Phys Fit 48:65–75

    CAS  Google Scholar 

  10. de Araujo GG, Papoti M, Dos Reis IG, de Mello MA, Gobatto CA (2012) Physiological responses during linear periodized training in rats. Eur J Appl Physiol 112:839–852

    Article  PubMed  Google Scholar 

  11. Hayes JP, Chappell MA (1990) Individual consistency of maximal oxygen consumption in deer mice. Funct Ecol 4:495–503

    Article  Google Scholar 

  12. Xie B, Yan X, Cai X, Li J (2017) Effects of high-intensity interval training on aerobic capacity in cardiac patients: a systematic review with meta-analysis. Biomed Res Int 2017:5420840

    PubMed  PubMed Central  Google Scholar 

  13. Carmeli E, Merrick J, Kessel S, Masharawi Y, Carmeli V (2003) Elderly persons with intellectual disability: a study of clinical characteristics, functional status, and sensory capacity. Sci World J 3:298–307

    Article  Google Scholar 

  14. Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150

    Article  CAS  PubMed  Google Scholar 

  15. Ghanbari-Niaki A, Kraemer RR, Abednazari H (2011) Time-course alterations of plasma and soleus agouti-related peptide and relationship to ATP, glycogen, cortisol, and insulin concentrations following treadmill training programs in male rats. Horm Metab Res 43(2):112–116

    Article  CAS  PubMed  Google Scholar 

  16. Jensen J, Lai YC (2009) Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem 115(1):13–21

    Article  CAS  PubMed  Google Scholar 

  17. Jensen TE, Richter EA (2012) Regulation of glucose and glycogen metabolism during and after exercise. J Physiol 590(5):1069–1076

    Article  CAS  PubMed  Google Scholar 

  18. Jensen J, Rustad PI, Kolnes AJ, Lai YC (2011) The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol 2:112

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sjøberg KA, Frøsig C, Kjøbsted R, Sylow L, Kleinert M, Betik AC et al (2017) Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes 66(6):1501–1510

    Article  PubMed  Google Scholar 

  20. Luciano E, Carneiro EM, Carvalho CR, Carvalheira JB, Peres SB, Reis MA et al (2002) Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway. Eur J Endocrinol 147(1):149–157

    Article  CAS  PubMed  Google Scholar 

  21. Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E (2001) Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol 130(1):21–27

    Article  CAS  PubMed  Google Scholar 

  22. Pavlik G (1985) Effects of physical training and detraining on resting cardiovascular parameters in albino rats. Acta Physiol Hung 66(1):27–37

    CAS  PubMed  Google Scholar 

  23. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6(3):117–130

    Article  CAS  PubMed  Google Scholar 

  24. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46(11):2347–2355

    Article  CAS  PubMed  Google Scholar 

  25. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  26. Franchini E, Branco BM, Agostinho MF, Calmet M, Candau R (2015) Influence of linear and undulating strength periodization on physical fitness, physiological, and performance responses to simulated judo matches. J Strength Cond Res 29(2):358–367

    Article  PubMed  Google Scholar 

  27. Prestes J, da Cunha Nascimento D, Tibana RA, Teixeira TG, Vieira DC, Tajra V et al (2015) Understanding the individual responsiveness to resistance training periodization. Age (Dordr) 37(3):9793

    Article  Google Scholar 

  28. Mazzucatto F, Higa TS, Fonseca-Alaniz MH, Evangelista FS (2014) Reversal of metabolic adaptations induced by physical training after two weeks of physical detraining. Int J Clin Exp Med 7(8):2000–2008

    PubMed  PubMed Central  Google Scholar 

  29. Ormsbee MJ, Arciero PJ (2011) Detraining increases body fat and weight and decreases VO2 peak and metabolic rate. J Strength Cond Res 26(8):2087–2095

    Article  Google Scholar 

  30. Pauli JR, Ropelle ER, Cintra DE, De Souza CT, da Silva AS, Moraes JC et al (2010) Acute exercise reverses aged-induced impairments in insulin signaling in rodent skeletal muscle. Mech Ageing Dev 131(5):323–329

    Article  CAS  PubMed  Google Scholar 

  31. Pauli JR, Leme J, Crespilho D, Mello MA, Rogatto G, Luciano E (2005) Influence of physical training on the parameters of the adrenal hypothalamic pituitary axis of rats treated with dexamethasone. Rev Port Cien Desp 2:143–152

    Google Scholar 

  32. Geirsdottir OG, Arnarson A, Briem K, Ramel A, Jonsson PV, Thorsdottir I (2012) Effect of 12-week resistance exercise program on body composition, muscle strength, physical function, and glucose metabolism in healthy, insulin-resistant, and diabetic elderly Icelanders. J Gerontol A Biol Sci Med Sci 67(11):1259–1265

    Article  CAS  PubMed  Google Scholar 

  33. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403

    Article  CAS  PubMed  Google Scholar 

  34. Barbosa de Queiroz K, Honorato-Sampaio K, Rossoni Júnior JV, Andrade Leal D, Pinto AB, Kappes-Becker L et al (2017) Physical activity prevents alterations in mitochondrial ultrastructure and glucometabolic parameters in a high-sugar diet model. PLoS One 12(2):e0172103

    Article  PubMed  PubMed Central  Google Scholar 

  35. Farah D, Nunes J, Sartori M, Dias DD, Sirvente R, Silva MB et al (2016) Exercise training prevents cardiovascular derangements induced by fructose overload in developing rats. PLoS One 11(12):e0167291

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fidalgo M, Falcão-Tebas F, Bento-Santos A, de Oliveira E, Nogueira-Neto JF, de Moura EG et al (2013) Programmed changes in the adult rat offspring caused by maternal protein restriction during gestation and lactation are attenuated by maternal moderate-low physical training. Br J Nutr 109(3):449–456

    Article  CAS  PubMed  Google Scholar 

  37. Marschner RA, Pinto G, Borges J, Markoski MM, Schaan BD, Lehnen AM (2017) Short-term detraining does not change insulin sensitivity and RBP4 in rodents previously submitted to aerobic exercise. Horm Metab Res 49(1):58–63

    CAS  PubMed  Google Scholar 

  38. Santos AP, Marinho DA, Costa AM, Izquierdo M, Marques MC (2012) The effects of concurrent resistance and endurance training follow a detraining period in elementary school students. J Strength Cond Res 26(6):1708–1716

    Article  PubMed  Google Scholar 

  39. Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC (2007) Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol 34(8):760–765

    Article  CAS  PubMed  Google Scholar 

  40. Lo MS, Lin LL, Yao WJ, Ma MC (2011) Training and detraining effects of the resistance vs. endurance program on body composition, body size, and physical performance in young men. J Strength Cond Res 25(8):2246–2254

    Article  PubMed  Google Scholar 

  41. Theodorou AA, Panayiotou G, Volaklis KA, Douda HT, Paschalis V, Nikolaidis MG et al (2016) Aerobic, resistance and combined training and detraining on body composition, muscle strength, lipid profile and inflammation in coronary artery disease patients. Res Sports Med 24(3):171–184

    Article  PubMed  Google Scholar 

  42. Mitsuhashi T, Yamada C, Iida A, Hiratsuka N, Inabe F, Araida N et al (2011) Long-term detraining increases the risk of metabolic syndrome in Japanese men. Tokai J Exp Clin Med 36(4):95–99

    CAS  PubMed  Google Scholar 

  43. Vogler CM, Menant JC, Sherrington C, Ogle SJ, Lord SR (2012) Evidence of detraining after 12-week home-based exercise programs designed to reduce fall-risk factors in older people recently discharged from hospital. Arch Phys Med Rehabil 93(10):1685–1691

    Article  PubMed  Google Scholar 

  44. Coetsee C, Terblanche E (2015) The time course of changes induced by resistance training and detraining on muscular and physical function in older adults. Eur Rev Aging Phys Act 12:7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Joo CH (2016) The effects of short-term detraining on exercise performance in soccer players. J Exerc Rehabil 12(1):54–59

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the São Paulo Research Foundation (FAPESP Process No. 2010/12896-0). We thank José Roberto R. Silva for technical assistance. This manuscript was translated for proper English Language by native speaking editors at American Journal Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Ghezzi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee. All procedures were approved by the University Research Ethics Committee.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezzi, A.C., Cambri, L.T., Botezelli, J.D. et al. Muscular glucose metabolism in middle-age trained rats. Sport Sci Health 13, 527–533 (2017). https://doi.org/10.1007/s11332-017-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-017-0377-2

Keywords

Navigation