Skip to main content
Log in

Drug-induced sleep endoscopy with target-controlled infusion using propofol and monitored depth of sedation to determine treatment strategies in obstructive sleep apnea

  • ENT • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Drug-induced sleep endoscopy (DISE) has become an important diagnostic examination tool in the treatment decision process for surgical therapies in the treatment of obstructive sleep apnea (OSA). Currently, there is a variety of regimes for the performance of DISE, which renders comparison and assessment across results difficult. It remains unclear how the different regimes influence the findings of the examination and the resulting conclusions and treatment recommendations. This study aimed to investigate the correlation between increasing levels of sedation (i.e., light, medium, and deep) induced by propofol using a target-controlled infusion (TCI) pump, with the obstruction patterns at the levels of the velum, oropharynx, tongue base, and epiglottis (i.e., VOTE classification). A second goal was the establishment of a sufficient sedation level to enable a reliable decision regarding treatment recommendations.

Material and methods

Forty-three patients with OSA underwent a DISE procedure using propofol TCI. Three levels of sedation were defined, depending on entropy levels and assessment of sedation: light sedation, medium sedation, and deep sedation. The evaluation of the upper airway at each level, with increasing sedation, was documented using the VOTE classification. The elapsed time at which each assessment was performed was recorded.

Results

Upper airway changes occurred and were measured throughout the DISE procedure. Clinically useful determinations of airway closure occurred at medium sedation; this level of sedation was most probably achieved with a blood propofol concentration of 3.2 μg/ml. In all 43 patients, definite treatment decisions could be made at medium sedation level. Increasing sedation did not result in changes in the treatment decision.

Conclusions

Changes in upper airway collapse during DISE with propofol TCI occur at levels of medium sedation. Decisions regarding surgical treatment could be made at this level of sedation.

Clinical trial name

Upper Airway Collapse in Patients with Obstructive Sleep Apnea Syndrome by Drug Induced Sleep Endoscopy (URL: https://clinicaltrials.gov/ct2/results?term=NCT02588300&Search=Search)

Registration number

NCT02588300

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  2. Strollo PJ Jr, Rogers RM (1996) Obstructive sleep apnea. N Engl J Med 334(2):99–104

    Article  PubMed  Google Scholar 

  3. Lee W, Nagubadi S, Kryger MH, Mokhlesi B (2008) Epidemiology of obstructive sleep apnea: a population-based perspective. Expert Rev Respir Med 2(3):349–364

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Ouyang Y, Wang Z, Zhao G, Liu L, Bi Y (2013) Obstructive sleep apnea and risk of cardiovascular disease and all-cause mortality: a meta-analysis of prospective cohort studies. Int J Cardiol 169(3):207–214

    Article  PubMed  Google Scholar 

  5. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053

    Article  PubMed  Google Scholar 

  6. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, Stubbs R, Hla KM (2008) Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 31(8):1071–1078

    PubMed  PubMed Central  Google Scholar 

  7. Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ (2006) Continuous positive airways pressure for obstructive sleep apnoea in adults. The Cochrane Database of Systematic Reviews (3):Cd001106

  8. Heiser C, Sommer JU, Stern-Straeter J, Tillmann HC, Hörmann K, Maurer JT, Stuck BA (2010) Einfluss der Atemluftbefeuchtung auf die Akzeptanz der CPAP-Therapie bei Patienten mit obstruktiver Schlafapnoe. Somnologie 14(4):282–290

    Article  Google Scholar 

  9. Weaver TE (2013) Don’t start celebrating—CPAP adherence remains a problem. J Clin Sleep Med 9(6):551–552

    PubMed  PubMed Central  Google Scholar 

  10. Weaver TE, Grunstein RR (2008) Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc 5(2):173–178. doi:10.1513/pats.200708-119MG

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ravesloot MJ, de Vries N, Stuck BA (2014) Treatment adherence should be taken into account when reporting treatment outcomes in obstructive sleep apnea. Laryngoscope 124(1):344–345

    Article  PubMed  Google Scholar 

  12. De Vito A, Carrasco Llatas M, Vanni A, Bosi M, Braghiroli A, Campanini A, de Vries N, Hamans E, Hohenhorst W, Kotecha BT, Maurer J, Montevecchi F, Piccin O, Sorrenti G, Vanderveken OM, Vicini C (2014) European position paper on drug-induced sedation endoscopy (DISE). Sleep Breath 18(3):453–465

    Article  PubMed  Google Scholar 

  13. Croft CB, Pringle M (1991) Sleep nasendoscopy: a technique of assessment in snoring and obstructive sleep apnoea. Clin Otolaryngol Allied Sci 16(5):504–509

    Article  CAS  PubMed  Google Scholar 

  14. Eastwood PR, Szollosi I, Platt PR, Hillman DR (2002) Comparison of upper airway collapse during general anaesthesia and sleep. Lancet 359(9313):1207–1209

    Article  PubMed  Google Scholar 

  15. Gillespie MB, Reddy RP, White DR, Discolo CM, Overdyk FJ, Nguyen SA (2013) A trial of drug-induced sleep endoscopy in the surgical management of sleep-disordered breathing. Laryngoscope 123(1):277–282

    Article  PubMed  Google Scholar 

  16. Koutsourelakis I, Safiruddin F, Ravesloot M, Zakynthinos S, de Vries N (2012) Surgery for obstructive sleep apnea: sleep endoscopy determinants of outcome. Laryngoscope 122(11):2587–2591

    Article  PubMed  Google Scholar 

  17. Rabelo FA, Braga A, Kupper DS, De Oliveira JA, Lopes FM, de Lima Mattos PL, Barreto SG, Sander HH, Fernandes RM, Valera FC (2010) Propofol-induced sleep: polysomnographic evaluation of patients with obstructive sleep apnea and controls. Otolaryngol Head Neck Surgery 142(2):218–224

    Article  Google Scholar 

  18. Rabelo FA, Kupper DS, Sander HH, Fernandes RM, Valera FC (2013) Polysomnographic evaluation of propofol-induced sleep in patients with respiratory sleep disorders and controls. Laryngoscope 123(9):2300–2305

    Article  CAS  PubMed  Google Scholar 

  19. Kezirian EJ, Hohenhorst W, de Vries N (2011) Drug-induced sleep endoscopy: the VOTE classification. Eur Arch Otorhinolaryngol 268(8):1233–1236

    Article  PubMed  Google Scholar 

  20. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88(5):1170–1182

    Article  CAS  PubMed  Google Scholar 

  21. Hastie T., Tibshirani R, Friedman J. (2009) The elements of statistical learning: data mining, inference, and prediction, Second Edition. 2. Edition edn. Springer, New York

  22. Grubinger T, Zeileis A, Pfeiffer K-P (2014) evtree: evolutionary learning of globally optimal classification and regression trees in R. 2014 61 (1):29

  23. Atkins JH, Mandel JE, Rosanova G (2014) Safety and efficacy of drug-induced sleep endoscopy using a probability ramp propofol infusion system in patients with severe obstructive sleep apnea. Anesth Analg 119(4):805–810

    Article  CAS  PubMed  Google Scholar 

  24. Carrasco Llatas M, Agostini Porras G, Cuesta Gonzalez MT, Rodrigo Sanbartolome A, Giner Bayarri P, Gomez-Pajares F, Dalmau Galofre J (2014) Drug-induced sleep endoscopy: a two drug comparison and simultaneous polysomnography. Eur Arch Otorhinolaryngol 271(1):181–187

    Article  PubMed  Google Scholar 

  25. De Vito A, Agnoletti V, Berrettini S, Piraccini E, Criscuolo A, Corso R, Campanini A, Gambale G, Vicini C (2011) Drug-induced sleep endoscopy: conventional versus target controlled infusion techniques—a randomized controlled study. Eur Arch Otorhinolaryngol 268(3):457–462

    Article  PubMed  Google Scholar 

  26. Ravesloot MJ, de Vries N (2011) One hundred consecutive patients undergoing drug-induced sleep endoscopy: results and evaluation. Laryngoscope 121(12):2710–2716

    Article  PubMed  Google Scholar 

  27. Struys MM, De Smet T, Glen JI, Vereecke HE, Absalom AR, Schnider TW (2016) The history of target-controlled infusion. Anesth Analg 122(1):56–69

    Article  CAS  PubMed  Google Scholar 

  28. Shafer SL, Egan T (2016) Target-controlled infusions: surfing USA redux. Anesth Analg 122(1):1–3

    Article  PubMed  Google Scholar 

  29. Short TG, Hannam JA, Laurent S, Campbell D, Misur M, Merry AF, Tam YH (2016) Refining target-controlled infusion: an assessment of pharmacodynamic target-controlled infusion of propofol and remifentanil using a response surface model of their combined effects on bispectral index. Anesth Analg 122(1):90–97

    Article  CAS  PubMed  Google Scholar 

  30. Absalom AR, Glen JI, Zwart GJ, Schnider TW, Struys MM (2016) Target-controlled infusion: a mature technology. Anesth Analg 122(1):70–78

    Article  CAS  PubMed  Google Scholar 

  31. Schnider TW, Minto CF, Struys MM, Absalom AR (2016) The safety of target-controlled infusions. Anesth Analg 122(1):79–85

    Article  CAS  PubMed  Google Scholar 

  32. Gray JM, Kenny GN (1998) Development of the technology for ‘Diprifusor’ TCI systems. Anaesthesia 53(Suppl 1):22–27

    Article  CAS  PubMed  Google Scholar 

  33. Hillman DR, Walsh JH, Maddison KJ, Platt PR, Kirkness JP, Noffsinger WJ, Eastwood PR (2009) Evolution of changes in upper airway collapsibility during slow induction of anesthesia with propofol. Anesthesiology 111(1):63–71

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt GN, Bischoff P, Standl T, Hellstern A, Teuber O, Schulte Esch J (2004) Comparative evaluation of the Datex-Ohmeda S/5 entropy module and the bispectral index monitor during propofol-remifentanil anesthesia. Anesthesiology 101(6):1283–1290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Heiser.

Ethics declarations

Conflict of interest

Clemens Heiser is a consultant of Inspire Medical Systems (Maple Grove USA) and Sutter Medizintechnik GmbH (Freiburg, Germany). He received personal fees from Neuwirth Medical Products (Obernburg, Germany) and Heinen und Lösenstein (Bad Ems, Germany). Benedikt Hofauer received grants and research support from Inspire Medical Systems (Maple Grove USA).

Eberhard F. Kochs received grants and research support from the Federal Ministry of Educations and Research (Bonn, Germany) and German Research Foundation (Bonn, Germany).

Guenther M. Edenharter is a consultant of AbbVie GmbH & Co.KG (Wiesbaden, Germany).

Alexander Hapfelmeir, Phillippe Fthenakis, Sebastian Berger, Winfried Hohenhorst, and Klaus J. Wagner declare that they have no conflict of interests.

The article submitted is not related to any of these relationships.

Financial support

No financial support for this trial

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiser, C., Fthenakis, P., Hapfelmeier, A. et al. Drug-induced sleep endoscopy with target-controlled infusion using propofol and monitored depth of sedation to determine treatment strategies in obstructive sleep apnea. Sleep Breath 21, 737–744 (2017). https://doi.org/10.1007/s11325-017-1491-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-017-1491-8

Keywords

Navigation