Skip to main content
Log in

Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

The objective of the present study was to validate noninvasive, continuous blood pressure (BP) measurement using pulse transit time (PTT) to represent absolute values and detect BP changes under continuous positive airway pressure (CPAP) treatment.

Methods

We applied CPAP to 78 patients of a cardiological sleep lab using 0 (baseline), 4, 8, and 12 cmH2O for 10 min at every level and measured BP simultaneous via PTT-based method and standard oscillometric method (OM).

Results

Quality of signal perception was acceptable to convert PTT into BP values in 64 patients (82%). When comparing both methods, we found a strong linear correlation of systolic and diastolic BP (baseline, r = 0.94 for systolic BP; r = 0.95 for diastolic BP, p < 0.001) while no significant differences between absolute values obtained with OM and PTT measurement. Mean bias at baseline was 4.1 ± 3.2 mmHg for systolic BP and 2.3 ± 2.2 mmHg for diastolic BP. With increasing CPAP levels, PTT and OM measurements differed continuously up to a systolic difference of 6.6 ± 4.9 mmHg and a diastolic difference of 4.4 ± 3.5 mmHg. There was no definite trend of PTT method to either over- or underestimate BP.

Conclusions

We found that PTT- and OM-based BP results are closely correlated while applying CPAP over a period of 40 min. With higher CPAP level, bias between both methods increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong MY, Pickwell-MacPherson E, Zhang YT (2009) The acute effects of running on blood pressure estimation using pulse transit time in normotensive subjects. Eur J Appl Physiol 107:169–175

    Article  PubMed  Google Scholar 

  2. Pitson DJ, Stradling JR (1998) Value of beat-to-beat blood pressure changes, detected by pulse transit time, in the management of the obstructive sleep apnoea/ hypopnoea syndrome. Eur Respir J 12:685–692

    Article  PubMed  CAS  Google Scholar 

  3. Foo JY, Lim CS, Wang P (2006) Evaluation of blood pressure changes using vascular transit time. Physiol Meas 27:685–694

    Article  PubMed  Google Scholar 

  4. Pitson DJ, Sandell A, van den Hout R, Stradling JR (1995) Use of pulse transit time as a measure of inspiratory effort in patients with obstructive sleep apnoea. Eur Respir J 8:1669–1674

    Article  PubMed  CAS  Google Scholar 

  5. Smith RP, Argod J, Pépin JL, Lévy PA (1999) Pulse transit time: an appraisal of potential clinical applications. Thorax 54:452–457

    Article  PubMed  CAS  Google Scholar 

  6. Payne RA, Symeonides CN, Webb DJ, Maxwell SR (2006) Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. Eur J Appl Physiol 100:136–141

    Article  CAS  Google Scholar 

  7. Argod J, Pépin JL, Lévy P (1998) Differentiating obstructive and central sleep respiratory events through pulse transit time. Am J Respir Crit Care Med 158:1778–1783

    PubMed  CAS  Google Scholar 

  8. Kounalakis SN, Geladas ND (2009) The role of pulse transit time as an index of arterial stiffness during exercise. Cardiovasc Eng 9:92–97

    Article  PubMed  CAS  Google Scholar 

  9. Bartsch S, Ostojic D, Schmalgemeier H, Bitter T, Westerheide N, Eckert S, Horstkotte D, Oldenburg O (2010) Validation of continuous blood pressure measurements by pulse transit time: a comparison with invasive measurements in a cardiac intensive care unit. Dtsch Med Wochenschr 135:2406–2412

    Article  PubMed  CAS  Google Scholar 

  10. Wagner DR, Roesch N, Harpes P, Körtke H, Plumer P, Saberin A, Chakoutio V, Oundjede D, Delagardelle C, Beissel J, Gilson G, Kindermann I, Böhm M (2010) Relationship between pulse transit time and blood pressure is impaired in patients with chronic heart failure. Clin Res Cardiol 99:657–664

    Article  PubMed  Google Scholar 

  11. Teng XF, Zhang YT (2006) An evalutation of a PTT-based method for noninvasive and cuffless estimation of arterial blood pressure. Conf Proc IEEE Eng Med Biol Soc 1:6049–6052

    PubMed  CAS  Google Scholar 

  12. Acosta B, DiBenedetto R, Rahimi A, Acosta MF, Cuadra O, Van Nguyen A, Morrow L (2000) Hemodynamic effects of noninvasive bilevel positive airway pressure on patients with chronic congestive heart failure with systolic dysfunction. Chest 118:1004–1009

    Article  PubMed  CAS  Google Scholar 

  13. Oldenburg O, Bartsch S, Bitter T, Schmalgemeier H, Fischbach T, Westerheide N, Horstkotte D (2011) Hypotensive effects of positive airway pressure ventilation in heart failure patients with sleep-disordered breathing. Sleep Breath. doi:10.1007/s11325-011-0571-4, epub ahead of print

  14. Levinson PD, McGarvey ST, Carlisle CC, Eveloff SE, Herbert PN, Millman RP (1993) Adiposity and cardiovascular risk factors in men with obstructive sleep apnea. Chest 103:1336–1342

    Article  PubMed  CAS  Google Scholar 

  15. Coccagna G, Mantovani M, Brignani F, Manzini A, Lugaresi E (1971) Arterial pressure changes during spontaneous sleep in man. Electroencephalogr Clin Neurophysiol 31:277–281, Laboratory note

    Article  PubMed  CAS  Google Scholar 

  16. Kikuya M, Ohkubo T, Asayama K, Metoki H, Obara T, Saito S, Hashimoto J, Totsune K, Hoshi H, Satoh H, Imai Y (2005) Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: the Ohasama study. Hypertension 45:240–245

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki Y, Kuwajima I, Aono T, Kanemaru A, Nishinaga M, Shibata H, Ozawa T (2000) Prognostic value of nighttime blood pressure in the eldery: a prospective study of 24-hour blood pressure. Hypertens Res 23:323–330

    Article  PubMed  CAS  Google Scholar 

  18. Tholl U, Anlauf M, Lichtblau U, Dammer R, Roggenbuck U (2006) The Stamp of Quality of the German Hypertension League for the clinical validation of blood pressure measuring devices: results from 51 devices under test. Dtsch Med Wochenschr 131:31–36

    Article  Google Scholar 

  19. O’Brien E, Pickering T, Asmar R, Myers M, Parati G, Staessen J, Mengden T, Imai Y, Waeber B, Palatini P, Gerin W (2002) Working Group on Blood Pressure Monitoring of the European Society of Hypertension International Protocol for validation of blood pressure measuring devices in adults. Blood Press Monit 7:3–17

    Article  PubMed  Google Scholar 

  20. Young CC, Mark JB, White W, DeBree A, Vender JS, Fleming A (1995) Clinical evaluation of continious noninvasive blood pressure monitoring: accuracy and tracking capabilities. J Clin Monit 11:245–252

    Article  PubMed  CAS  Google Scholar 

  21. Naschitz JE, Bezobchuk S, Mussafia-Priselac R, Sundick S, Dreyfuss D, Khorshidi I, Karidis A, Manor H, Nagar M, Peck ER, Peck S, Storch S, Rosner I, Gaitini L (2004) Pulse transit time by R-wave-gated infrared photoplethysmography: review of the literature and personal experience. J Clin Monit 18:333–342

    Article  Google Scholar 

  22. Lutter N, Engl HG, Fischer F, Bauer RD (1996) Noninvasive continuous blood pressure control by pulse wave velocity. Z Kardiol 85:124–126

    PubMed  Google Scholar 

  23. Barschdorff D, Erig M (1998) Continuous blood pressure monitoring during stress ECG. Biomed Tech 43:34–39

    Article  CAS  Google Scholar 

  24. Chen W, Kobayashi T, Ichikawa S, Takeuchi Y, Togawa T (2000) Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med Biol Eng Comput 38:569–574

    Article  PubMed  CAS  Google Scholar 

  25. Liang YL, Teede H, Shiel LM, Thomas A, Craven R, Sachithanandan N, McNeil JJ, Cameron JD, Dart A, McGrath BP (1997) Effects of oestrogen and progesterone on age-related changes in arteries of postmenopausal women. Clin Exp Pharmacol Physiol 24:457–459

    Article  PubMed  CAS  Google Scholar 

  26. Yin M, Nakayama M, Miyazaki S, Ishikawa K (2008) How much influence does inspiration have on pulse transit time in sleep apnea? Otolaryngol Head Neck Surg 138:619–625

    Article  PubMed  Google Scholar 

  27. Bruner JM, Krenis LJ, Kunsman JM, Sherman AP (1981) Comparison of direct and indirect methods of measuring arterial blood pressure. Med Instrum 15:11–21

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Oldenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmalgemeier, H., Bitter, T., Bartsch, S. et al. Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation. Sleep Breath 16, 1105–1112 (2012). https://doi.org/10.1007/s11325-011-0609-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-011-0609-7

Keywords

Navigation