Skip to main content

Advertisement

Log in

Prevalence and treatment of central sleep apnoea emerging after initiation of continuous positive airway pressure in patients with obstructive sleep apnoea without evidence of heart failure

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

This study aimed to assess the prevalence of complex sleep apnoea (CompSA), defined as central sleep apnoea (CSA) emerging after the initiation of continuous positive airway pressure (CPAP) therapy for obstructive sleep apnoea (OSA), in patients with normal brain natriuretic peptide (BNP) levels, along with assessing the prevalence of CSA persisting in such patients after the onset of CPAP therapy. We hypothesised that the prevalence of CompSA and persistent CSA after CPAP initiation would be low in patients with OSA and normal BNP levels.

Material and methods

Between April 2004 and July 2007, CPAP was initiated for all patients with OSA for two nights using a standardised protocol. The prevalence of CompSA syndrome (CompSAS) and persisting CSA [central apnoea index (CAI) >5/h and apnoea–hypopnoea index (AHI) >15/h with >50% central events during CPAP therapy] was prospectively assessed in patients with normal BNP levels. Patients with CompSAS or persisting CSA upon CPAP treatment received adaptive servoventilation (ASV).

Results

Of 1,776 patients with OSA receiving CPAP, 28 patients (1.57%) had CSA at the time of CPAP therapy and normal BNP levels. Additionally, 10 patients had CompSAS (0.56%) and 18 patients (1.01%) had persisting CSA. In patients with CompSA or persisting CSA, the AHI was significantly lower with CPAP therapy than at the time of diagnosis (34 ± 15/h vs. 47 ± 20/h, p = 0.005). The CAI increased from 10 ± 10/h to 18/h ± 13/h (p = 0.009) upon initiation of CPAP therapy. ASV reduced the AHI to 6 ± 12/h (p < 0.001) during the first night of use.

Conclusion

The prevalence of CompSA or persisting CSA in patients with OSA and normal BNP levels who are receiving CPAP therapy is low (1.57%). ASV is an effective treatment for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thomas RJ, Terzano MG, Parrino L, Weiss JW (2004) Obstructive sleep-disordered breathing with a dominant cyclic alternating pattern—a recognizable polysomnographic variant with practical clinical implications. Sleep 27:229–234

    PubMed  Google Scholar 

  2. Morgenthaler TI, Kagramanov V, Hanak V, Decker PA (2006) Complex sleep apnea syndrome: is it a unique clinical syndrome? Sleep 29:1203–1209

    PubMed  Google Scholar 

  3. Xie A, Rutherford R, Rankin F, Wong B, Bradley TD (1995) Hypocapnia and increased ventilator responsiveness in patients with idiopathic central sleep apnea. Am J Respir Crit Care Med 152:1950–1955

    PubMed  CAS  Google Scholar 

  4. Solin P (2000) Peripheral and central ventilatory responses in central sleep apnea with and without congestive heart failure. Am J Respir Crit Care Med 162:2194–2200

    PubMed  CAS  Google Scholar 

  5. Philippe C, Stoica-Herman M, Drouot X, Raffestin B, Escourrou P, Hittinger L, Michel PL, Rouault S, d’Ortho MP (2006) Compliance with and efficacy of adaptive servo-ventilation (ASV) versus continuous positive airway pressure (CPAP) in the treatment of Cheyne–Stokes respiration in heart failure over a six month period. Heart 92:337–342

    Article  PubMed  CAS  Google Scholar 

  6. Teschler H, Döhring J, Wang YM, Berthon-Jones M (2001) Adaptive pressure support servo-ventilation. Am J Respir Crit Care Med 164:614–619

    PubMed  CAS  Google Scholar 

  7. Pepperell JC, Maskell NA, Jones DR, Langford-Wiley BA, Crosthwaite N, Stradling JR, Davies RJ (2003) A randomized controlled trial of adaptive ventilation for Cheyne–Stokes breathing in heart failure. Am J Respir Crit Care Med 168:1109–1114

    Article  PubMed  Google Scholar 

  8. Töpfer V, El-Sebai M, Wessendorf TE, Moaridis I, Teschler H (2004) Adaptive servoventilation bei chronischer Herzinsuffizienz: Wirkung auf Cheyne-Stokes-Atmung und Lebensqualität. Pneumologie 58:28–32

    Article  PubMed  Google Scholar 

  9. Westhoff M, Arzt M, Litterst P (2010) Influence of adaptive servoventilation on B-type natriuretic peptide in patients with Cheyne–Stokes respiration and mild to moderate systolic and diastolic heart failure. Pneumologie 64:467–473

    Article  PubMed  CAS  Google Scholar 

  10. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda, Maryland, U.S. Department of Health, Education, and Welfare Public Health service, National Institutes of Health

  11. AASM (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The report of an American Academy of Sleep Medicine Task Force. Sleep 22:667–689

    Google Scholar 

  12. McDonagh TA, Robb SD, Murdoch DR, Morton JJ, Ford I, Morrison CE, Tunstall-Pedoe H, McMurray JJ, Dargie HJ (1998) Biochemical detection of left-ventricular systolic dysfunction. Lancet 351:9–13

    Article  PubMed  CAS  Google Scholar 

  13. Lubien E, DeMaria A, Krishnaswamy P, Clopton P, Koon J, Kazanegra R, Gardetto N, Wanner E, Maisel AS (2002) Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recording. Circulation 105:595–601

    Article  PubMed  CAS  Google Scholar 

  14. Steg PG, Joubin L, McCord J, Abraham WT, Hollander JE, Omland T, Mentré F, McCullough PA, Maisel AS (2005) B-type natriuretic peptide and echocardiographic determination of ejection fraction in the diagnosis of congestive heart failure in patients with acute dyspnea. Chest 128:21–29

    Article  PubMed  CAS  Google Scholar 

  15. Christ M, Sharkova Y, Fenske H, Rostig S, Herzum I, Becker HF, Mueller C, Grimm W (2007) Brain natriuretic peptide for prediction of Cheyne–Stokes respiration in heart failure patients. Int J Cardiol 116:62–69

    Article  PubMed  Google Scholar 

  16. Banno K, Okamura K, Kryger MH (2006) Adaptive servo-ventilation in patients with idiopathic Cheyne–Stokes breathing. J Clin Sleep Med 2:181–186

    PubMed  Google Scholar 

  17. Lehman S, Antic NA, Thompson C, Catcheside PG, Mercer J, McEvoy RD (2007) Central sleep apnea on commencement of continuous positive airway pressure in patients with a primary diagnosis of obstructive sleep apnea-hypopnea. J Clin Sleep Med 3:462–466

    PubMed  Google Scholar 

  18. Kuzniar TJ, Pusalavidyasagar S, Gay PC, Morgenthaler TI (2008) Natural course of complex sleep apnea—a retrospective study. Sleep Breath 12:135–139

    Article  PubMed  Google Scholar 

  19. Leung RS, Huber MA, Rogge T, Maimon N, Chiu KL, Bradley TD (2005) Association between atrial fibrillation and central sleep apnea. Sleep 28:1543–1546

    PubMed  Google Scholar 

  20. Mansfield DR, Solin P, Roebuck T, Bergin P, Kaye DM, Naughton MT (2003) The effect of successful heart transplant treatment of heart failure on central sleep apnea. Chest 124:1675–1681

    Article  PubMed  Google Scholar 

  21. Gilmartin GS, Daly RW, Thomax JR (2005) Recognition and management of complex sleep-disordered breathing. Curr Opin Pulm Med 11:485–493

    Article  PubMed  Google Scholar 

  22. Issa FG, Sullivan CE (1986) Reversal of central sleep apnea using nasal CPAP. Chest 90:165–171

    Article  PubMed  CAS  Google Scholar 

  23. Eckert DJ, Jordan AS, Merchia P, Malhotra A (2007) Central sleep apnea: pathophysiology and treatment. Chest 131:595–607

    Article  PubMed  Google Scholar 

  24. Sankri-Tarbichi AG, Rowley JA, Badr MS (2009) Expiratory pharyngeal narrowing during central hypocapnic hypopnea. Am J Respir Crit Care Med 179:313–319

    Article  PubMed  Google Scholar 

  25. Badr MS, Toiber F, Skatrud JB, Dempsey J (1995) Pharyngeal narrowing/occlusion during central sleep apnea. J Appl Physiol 78:1806–1815

    PubMed  CAS  Google Scholar 

  26. Luo YM, Tang J, Jolley C et al (2009) Distinguishing obstructive from central sleep apnea events. Diaphragm electromyogram and esophageal pressure compared. Chest 135:1133–1141

    Article  PubMed  Google Scholar 

  27. Javaheri S, Smith J, Chung E (2009) The prevalence and natural history of complex sleep apnea. J Clin Sleep Med 5:205–211

    PubMed  Google Scholar 

  28. Dernaika T, Tawk M, Nazir S, Younis W, Kinasewitz GT (2007) The significance and outcome of continuous positive airway pressure-related central sleep apnea during split-night sleep studies. Chest 132:81–87

    Article  PubMed  Google Scholar 

  29. Morgenthaler TI, Gay PC, Gordon N, Brown LK (2007) Adaptive servoventilation versus noninvasive positive pressure ventilation for central, mixed, and complex sleep apnea syndromes. Sleep 30:468–475

    PubMed  Google Scholar 

  30. Pusalavidyasagar SS, Olson EJ, Gay PC, Morgenthaler TI (2006) Treatment of complex sleep apnea syndrome: a retrospective comparative review. Sleep Med 7:474–479

    Article  PubMed  Google Scholar 

  31. Allam JS, Olson EJ, Gay PC, Morgenthaler TI (2007) Efficacy of adaptive servoventilation in treatment of complex and central sleep apnea syndromes. Chest 132:1839–1846

    Article  PubMed  Google Scholar 

  32. Randerath WJ, Galetke W, Rühle KH (2003) Auto-adjusting CPAP based on impedance versus bilevel pressure in difficult-to-treat sleep apnea syndrome: a prospective randomized crossover study. Med Sci Monit 9:CR353–CR358

    PubMed  Google Scholar 

  33. Zirlik S, Schahin SP, Premm W, Hahn EG, Fuchs FS (2009) Lung volumes and mean apnea duration in obstructive sleep apnea. Respir Physiol Neurobiol 168:303–305

    Article  PubMed  Google Scholar 

  34. Bitter T, Westerheide N, Faber L, Hering D, Prinz C, Langer C, Horstkotte D, Oldenburg O (2010) Adaptive servoventilation in diastolic heart failure. Eur Respir J 36:385–392

    Article  PubMed  CAS  Google Scholar 

  35. Solin P, Jackson DM, Roebuck T, Naughton MT (2002) Cardiac diastolic function and hypercapnic ventilatory responses in central sleep apnoea. Eur Respir J 20:717–723

    Article  PubMed  CAS  Google Scholar 

  36. Hall MJ, Xie A, Rutherford R, Ando S, Floras JS, Bradley TD (1996) Cycle length of periodic breathing in patients with and without heart failure. Am J Respir Crit Care Med 154:376–381

    PubMed  CAS  Google Scholar 

  37. Arzt M, Schulz M, Schroll S, Budweiser S, Bradley TD, Riegger GA, Pfeifer M (2009) Time course of continuous positive airway pressure effects on central sleep apnoea in patients with chronic heart failure. J Sleep Res 18:20–25

    Article  PubMed  Google Scholar 

  38. Johnson KG, Johnson DC (2005) Bilevel positive airway pressure worsens central apnoeas during sleep. Chest 128:2141–2150

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. P. Litterst reports that no significant conflicts of interest exist with any companies/organisations whose products or services are discussed in this article. There was no financial support for the study itself from any company. Michael Westhoff and Michael Arzt have received lecture fees from Respironics and Resmed, Germany; Michael Arzt has received unrestricted grant support from Resmed, Germany and grant support from the German Foundation for Cardiac Research (Deutsche Stiftung für Herzforschung).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Westhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westhoff, M., Arzt, M. & Litterst, P. Prevalence and treatment of central sleep apnoea emerging after initiation of continuous positive airway pressure in patients with obstructive sleep apnoea without evidence of heart failure. Sleep Breath 16, 71–78 (2012). https://doi.org/10.1007/s11325-011-0486-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-011-0486-0

Keywords

Navigation