Skip to main content
Log in

Differences in left ventricular cardiomyocyte loss induced by chronic intermittent hypoxia between spontaneously hypertensive and Wistar–Kyoto rats

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Rationale

Chronic intermittent hypoxia (CIH) is thought to induce several cardiovascular effects in patients with obstructive sleep apnoea (OSA). However, the effects of CIH on patients with long-standing hypertension are unknown.

Purpose

This prospective study aimed to investigate the influence of combined OSA and hypertension on cardiomyocyte death.

Methods

Wistar–Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were exposed to repetitive hypoxia–reoxygenation cycles (30 s of 5% O2; 45 s of 21% O2) or room air for 6 h/day during the light phase (10 a.m.–4 p.m.) for 10, 20, or 30 days, and the levels of necrosis and apoptosis induced in their left ventricular cardiomyocyte were examined.

Results

CIH increased the accumulation of reactive oxygen species, which induced cardiomyocyte necrosis in WKY and SHR (both p < 0.05). Cardiomyocyte oxidative stress levels by CIH were higher in SHR than in WKY (p < 0.05); therefore, cardiomyocyte necrosis was amplified (p < 0.05). Notably, if a superoxide-scavenging agent is injected beforehand, cardiomyocyte necrosis can be effectively inhibited (p < 0.05). When WKY and SHR are exposed to CIH, increases in mitochondria-released cytochrome c and activation of caspase-3 are found in the cytosolic fraction only in WKY.

Conclusions

CIH causes cardiomyocyte loss in SHR mainly through cardiomyocyte necrosis. In WKY however, CIH simultaneously induces apoptosis and necrosis of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohsenin V (2001) Sleep-related breathing disorders and risk of stroke. Stroke 32:1271–1278

    Article  PubMed  CAS  Google Scholar 

  2. Park AM, Suzuki YJ (2007) Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol 102:1806–1814

    Article  PubMed  CAS  Google Scholar 

  3. Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM (2005) Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 172:915–920

    Article  PubMed  Google Scholar 

  4. Belaidi E, Joyeux-Faure M, Ribuot C, Launois SH, Levy P, Godin-Ribuot D (2009) Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. J Am Coll Cardiol 53:1309–1317

    Article  PubMed  CAS  Google Scholar 

  5. Matsuoka R, Ogawa K, Yaoita H, Naganuma W, Maehara K, Maruyama Y (2002) Characteristics of death of neonatal rat cardiomyocytes following hypoxia or hypoxia-reoxygenation: the association of apoptosis and cell membrane disintegrity. Heart Vessels 16:241–248

    Article  PubMed  Google Scholar 

  6. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124:1386–1392

    Article  PubMed  CAS  Google Scholar 

  7. Barcelo A, Miralles C, Barbe F, Vila M, Pons S, Agusti AG (2000) Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J 16:644–647

    Article  PubMed  CAS  Google Scholar 

  8. Chen L, Zhang J, Gan TX, Chen-Izu Y, Hasday JD, Karmazyn M, Balke CW, Scharf SM (2008) Left ventricular dysfunction and associated cellular injury in rats exposed to chronic intermittent hypoxia. J Appl Physiol 104:218–223

    Article  PubMed  CAS  Google Scholar 

  9. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH (1995) Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91:161–170

    PubMed  CAS  Google Scholar 

  10. Fortuno MA, Ravassa S, Fortuno A, Zalba G, Diez J (2001) Cardiomyocyte apoptotic cell death in arterial hypertension: mechanisms and potential management. Hypertension 38:1406–1412

    Article  PubMed  CAS  Google Scholar 

  11. Lee SD, Kuo WW, Wu CH, Lin YM, Lin JA, Lu MC, Yang AL, Liu JY, Wang SG, Liu CJ, Chen LM, Huang CY (2006) Effects of short- and long-term hypobaric hypoxia on Bcl2 family in rat heart. Int J Cardiol 108:376–384

    Article  PubMed  Google Scholar 

  12. Lee SD, Kuo WW, Lin JA, Chu YF, Wang CK, Yeh YL, Wang SG, Liu JY, Chang MH, Huang CY (2007) Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. Int J Cardiol 116:348–356

    Article  PubMed  Google Scholar 

  13. Buzello M, Boehm C, Orth S, Fischer B, Ehmke H, Ritz E, Mall G, Amann K (2003) Myocyte loss in early left ventricular hypertrophy of experimental renovascular hypertension. Virchows Arch 442:364–371

    PubMed  CAS  Google Scholar 

  14. Gonzalez A, Fortuno MA, Querejeta R, Ravassa S, Lopez B, Lopez N, Diez J (2003) Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc Res 59:549–562

    Article  PubMed  CAS  Google Scholar 

  15. Katz AM (1994) The cardiomyopathy of overload: an unnatural growth response in the hypertrophied heart. Ann Intern Med 121:363–371

    PubMed  CAS  Google Scholar 

  16. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P (1995) Stretch-induced programmed myocyte cell death. J Clin Invest 96:2247–2259

    Article  PubMed  CAS  Google Scholar 

  17. Drager LF, Bortolotto LA, Figueiredo AC, Silva BC, Krieger EM, Lorenzi-Filho G (2007) Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest 131:1379–1386

    Article  PubMed  Google Scholar 

  18. Fletcher EC, Orolinova N, Bader M (2002) Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol 92:627–633

    Article  PubMed  CAS  Google Scholar 

  19. Lai CJ, Yang CC, Hsu YY, Lin YN, Kuo TB (2006) Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol 100:1974–1982

    Article  PubMed  CAS  Google Scholar 

  20. Troncoso Brindeiro CM, da Silva AQ, Allahdadi KJ, Youngblood V, Kanagy NL (2007) Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am J Physiol 293:H2971–H2976

    Google Scholar 

  21. Soukhova-O'Hare GK, Ortines RV, Gu Y, Nozdrachev AD, Prabhu SD, Gozal D (2008) Postnatal intermittent hypoxia and developmental programming of hypertension in spontaneously hypertensive rats: the role of reactive oxygen species and L-Ca2+ channels. Hypertension 52:156–162

    Article  PubMed  Google Scholar 

  22. Siu PM, Bryner RW, Martyn JK, Alway SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18:1150–1152

    PubMed  CAS  Google Scholar 

  23. Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44:248–252

    Article  PubMed  CAS  Google Scholar 

  24. Yuan YV, Kitts DD, Godin DV (1996) Heart and red blood cell antioxidant status and plasma lipid levels in the spontaneously hypertensive and normotensive Wistar-Kyoto rat. Can J Physiol Pharmacol 74:290–297

    PubMed  CAS  Google Scholar 

  25. Csonka C, Pataki T, Kovacs P, Muller SL, Schroeter ML, Tosaki A, Blasig IE (2000) Effects of oxidative stress on the expression of antioxidative defense enzymes in spontaneously hypertensive rat hearts. Free Radic Biol Med 29:612–619

    Article  PubMed  CAS  Google Scholar 

  26. Narang D, Sood S, Thomas M, Dinda AK, Maulik SK (2005) Dietary palm olein oil augments cardiac antioxidant enzymes and protects against isoproterenol-induced myocardial necrosis in rats. J Pharm Pharmacol 57:1445–1451

    Article  PubMed  CAS  Google Scholar 

  27. Nilakantan V, Zhou X, Hilton G, Shi Y, Baker JE, Khanna AK, Pieper GM (2006) Antagonizing reactive oxygen by treatment with a manganese (III) metalloporphyrin-based superoxide dismutase mimetic in cardiac transplants. J Thorac Cardiovasc Surg 131:898–906

    Article  PubMed  CAS  Google Scholar 

  28. Hickey AJ, Chai CC, Choong SY, de Freitas CS, Skea GL, Phillips AR, Cooper GJ (2009) Impaired ATP turnover and ADP supply depress cardiac mitochondrial respiration and elevate superoxide in nonfailing spontaneously hypertensive rat hearts. Am J Physiol Cell Physiol 297:C766–C774

    Article  PubMed  CAS  Google Scholar 

  29. Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142

    Article  PubMed  Google Scholar 

  30. Gozal E, Sachleben LR Jr, Rane MJ, Vega C, Gozal D (2005) Mild sustained and intermittent hypoxia induce apoptosis in PC-12 cells via different mechanisms. Am J Physiol Cell Physiol 288:C535–C542

    Article  PubMed  CAS  Google Scholar 

  31. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (1997) Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol 151:1205–1213

    PubMed  CAS  Google Scholar 

  32. Tanaka S, Takehashi M, Iida S, Kitajima T, Kamanaka Y, Stedeford T, Banasik M, Ueda K (2005) Mitochondrial impairment induced by poly(ADP-ribose) polymerase-1 activation in cortical neurons after oxygen and glucose deprivation. J Neurochem 95:179–190

    Article  PubMed  CAS  Google Scholar 

  33. Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Mol Med 6:271–282

    PubMed  CAS  Google Scholar 

  34. Samali A, Nordgren H, Zhivotovsky B, Peterson E, Orrenius S (1999) A comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis. Biochem Biophys Res Commun 255:6–11

    Article  PubMed  CAS  Google Scholar 

  35. Ohkuwa T, Itoh H, Yamamoto T, Minami C, Yamazaki Y (2005) Effect of hypoxia on norepinephrine of various tissues in rats. Wilderness Environ Med 16:22–26

    Article  PubMed  Google Scholar 

  36. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    PubMed  CAS  Google Scholar 

  37. Mann DL, Kent RL, Parsons B, Cooper G 4th (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804

    PubMed  CAS  Google Scholar 

  38. Bohm M, Castellano M, Paul M, Erdmann E (1994) Cardiac norepinephrine, beta-adrenoceptors, and Gi alpha-proteins in prehypertensive and hypertensive spontaneously hypertensive rats. J Cardiovasc Pharmacol 23:980–987

    Article  PubMed  CAS  Google Scholar 

  39. Narula J, Kharbanda S, Khaw BA (1997) Apoptosis and the heart. Chest 112:1358–1362

    Article  PubMed  CAS  Google Scholar 

  40. Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331

    PubMed  CAS  Google Scholar 

  41. Clarke M, Bennett M, Littlewood T (2007) Cell death in the cardiovascular system. Heart 93:659–664

    Article  PubMed  CAS  Google Scholar 

  42. Gandhi MS, Kamalov G, Shahbaz AU, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2010) Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Fail Rev (in press)

  43. Flotats A, Carrio I (2003) Non-invasive in vivo imaging of myocardial apoptosis and necrosis. Eur J Nucl Med Mol Imaging 30:615–630

    Article  PubMed  Google Scholar 

  44. Davies MJ (2000) The cardiomyopathies: an overview. Heart 83:469–474

    Article  PubMed  CAS  Google Scholar 

  45. Prabhakar NR (2001) Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol 90:1986–1994

    Article  PubMed  CAS  Google Scholar 

  46. Lerman LO, Chade AR, Sica V, Napoli C (2005) Animal models of hypertension: an overview. J Lab Clin Med 146:160–173

    Article  PubMed  CAS  Google Scholar 

  47. Sarikonda KV, Watson RE, Opara OC, Dipette DJ (2009) Experimental animal models of hypertension. J Am Soc Hypertens 3:158–165

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Council, Taiwan, grant NSC96-2320-B-320-017-MY2 and by Tzu Chi University, Taiwan, grant TCIRP 95004-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Ta Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, TI., Lai, CJ., Hsieh, CJ. et al. Differences in left ventricular cardiomyocyte loss induced by chronic intermittent hypoxia between spontaneously hypertensive and Wistar–Kyoto rats. Sleep Breath 15, 845–854 (2011). https://doi.org/10.1007/s11325-010-0448-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-010-0448-y

Keywords

Navigation