Skip to main content

Advertisement

Log in

Obstructive sleep apnea, cardiovascular disease, and inflammation—is NF-κB the key?

  • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) affects a large portion of the population and is associated with repeated airway collapse leading to chronic intermittent hypoxia, exaggerated swings in intrathoracic pressure and post apneic arousal. OSA is associated with heightened sympathoadrenal tone and is a risk factor for cardiovascular mortality and morbidity. In addition to well-known mechanical and autonomic effects, OSA appears to be associated with systemic inflammation. This could provide one mechanism leading to cardiovascular disease (CVD). A central factor in the inflammatory cascade is nuclear factor kappa B (NF-κB), which is involved in the transcription of numerous genes involved in the inflammatory cascade. The object of this article is to review recent literature on some of the aspects of OSA related to a proinflammatory state and the possible role of NF-κB as one mechanism providing a link between sleep apnea and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235

    Article  PubMed  CAS  Google Scholar 

  2. Lattimore JD, Celermajer DS, Wilcox I (2003) Obstructive sleep apnea and cardiovascular disease. J Am Coll Cardiol 41:1429–1437

    Article  PubMed  Google Scholar 

  3. Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev 7:35–51

    Article  PubMed  Google Scholar 

  4. Ayas NT, Mancini GB, Fleetham J (2006) Does CPAP delay the development of cardiovascular disease in patients with obstructive sleep apnoea hypopnoea? Thorax 61:459–460

    Article  PubMed  CAS  Google Scholar 

  5. Lavie L (2005) Sleep-disordered breathing and cerebrovascular disease: a mechanistic approach. Neurol Clin 23:1059–1075

    Article  PubMed  Google Scholar 

  6. Anand A, Remsburg-Sailor S, Launois SH, Weiss SW (2001) Peripheral vascular resistance increases after termination of obstructive apneas. J Appl Physiol 91:2359–2365

    PubMed  CAS  Google Scholar 

  7. Richter C, Gogvadze V, Laffranchi R (1995) Oxidants in mitochondria from physiology to diseases. Biochim Biophys Acta 1271:67–74

    PubMed  Google Scholar 

  8. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E (2004) Involvement of reactive oxygen species in toll-like receptor 4-dependent activation of NF-κB. J Immunol 172:2522–2529

    PubMed  CAS  Google Scholar 

  9. Barcelo A, Miralles C, Barbe F, Vila M, Pons S, Agusti AGN (2000) Abnormal lipid peroxidation in patients with sleep apnea. Eur Respir J 16:644–647

    Article  PubMed  CAS  Google Scholar 

  10. Lavie L, Vishnevsky A, Lavie P (2004) Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27:123–128

    PubMed  Google Scholar 

  11. Schulz R, Mahmaoudi S, Hattar K, Sibelius U, Olschewski H, Mayer K, Seeger W, Grimminger F (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Am J Respir Crit Care Med 162:566–570

    PubMed  CAS  Google Scholar 

  12. Yamauchi M, Nakamo H, Maekawa J, Okamoto Y, Ohnishi Y, Suzuki T, Kimura H (2005) Oxidative stress in obstructive sleep apnea. Chest 127:1674–1679

    Article  PubMed  CAS  Google Scholar 

  13. Rubinstein I (2003) Inflammation and obstructive sleep apnea syndrome pathogenesis: a working hypothesis. Respiration 70:665–671

    Article  PubMed  Google Scholar 

  14. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2002) Increased 8-isoprostane and interleukin-6 breath condensate of obstructive sleep apnea patients. Chest 122:1161–1167

    Article  Google Scholar 

  15. Minoguchi K, Yokoe T, Tanaka A, Ohta S, Hirano T, Yoshino G, O’Donnell CP, Adachi M (2006) Association between lipid peroxidation and inflammation in obstructive sleep apnoea. Eur Respir J 28:378–385

    Article  PubMed  CAS  Google Scholar 

  16. Ohga E, Nagase T, Tomita T, Teramoto S, Matsuse T, Katayama H, Ouchi Y (1999) Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome. J Appl Physiol 87:10–14

    PubMed  CAS  Google Scholar 

  17. Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165:934–939

    PubMed  Google Scholar 

  18. Dyugovskaya L, Lavie P, Hirsh M, Lavie L (2005) Activated CD8+ T-lymphocytes in obstructive sleep apnea. Eur Respir J 25:820–828

    Article  PubMed  CAS  Google Scholar 

  19. Christou K, Moulas AN, Pastaka C, Gourgoulianis KI (2003) Antioxidant capacity in obstructive sleep apnea patients. Sleep Med 4:225–228

    Article  PubMed  Google Scholar 

  20. Barcelo A, Barbe F, Pena M, Vila M, Perez G, Pierola J, Duran J, Agusti A (2006) Antioxidant status in patients with sleep apnea and impact of continuous positive airway pressure treatment. Eur Respir J 27:756–760

    Article  PubMed  CAS  Google Scholar 

  21. Svatikova A, Wolk R, Lerman LO, Juncos LA, Greene EL, McConnell JP, Somer VK (2005) Oxidative stress in obstructive sleep apnea. Eur Heart J 26:2435–2439

    Article  PubMed  CAS  Google Scholar 

  22. Christou K, Markoulis N, Moulas AN, Pastaka C, Gourgoulianis KI (2003) Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath 7:105–109

    Article  PubMed  Google Scholar 

  23. Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM (2005) Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 172:915–920

    Article  PubMed  Google Scholar 

  24. Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L, Gozal D, Liu R (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126:313–323

    Article  PubMed  CAS  Google Scholar 

  25. Hasday JD, Grum CM (1987) Nocturnal increase of urinary uric acid:creatinine ratio. A biochemical correlate of sleep-associated hypoxemia. Am Rev Respir Dis 135:534–5388

    PubMed  CAS  Google Scholar 

  26. Jordan W, Berger C, Cohrs S, Rodenbeck A, Mayer G, Niedmann PD, Ahsen N, Ruther E, Kornhuber J, Bleich S (2004) CPAP therapy effectively lowers serum homocysteine in obstructive sleep apnea syndrome. J Neural Transm 111:683–689

    Article  PubMed  CAS  Google Scholar 

  27. Svatikova A, Wolk R, Magera MJ, Shamsuzzaman AS, Phillips BG, Somer VK (2004) Plasma homocysteine in obstructive sleep apnea. Eur Heart J 25:1325–1329

    Article  PubMed  CAS  Google Scholar 

  28. Kokturk O, Ciftci TU, Mollarecep E, Ciftci B (2006) Serum homocysteine levels and cardiovascular morbidity in obstructive sleep apnea syndrome. Respir Med 100:536–641

    Article  PubMed  Google Scholar 

  29. Lavie L (2004) Sleep apnea syndrome, endothelial dysfunction, and cardiovascular morbidity. Sleep 27:1053–1054

    PubMed  Google Scholar 

  30. Lattimore JL, Wilcox I, Skilton M, Langenfeld, Celermajer DS (2006) Treatment of obstructive sleep apnea leads to improved microvascular endothelial function in systemic circulation. Thorax 61:491–495

    Article  PubMed  CAS  Google Scholar 

  31. Solh AA, Saliba R, Bosinski T, Grant B, Berbary E, Miller N (2006) Allopurinol improves endothelial function in sleep apnea: a randomized controlled study. Eur Respir J 27:997–1002

    PubMed  Google Scholar 

  32. Ohike Y, Kozaki K, Iijima K, Eto M, Kojima T, Ohga E, Santa T, Imai K, Hashimoto M, Yoshizumi M, Ouchi Y (2005) Amelioration of vascular endothelial dysfunction in obstructive sleep apnea syndrome by nasal continuous positive airway pressure. Circ J 69:221–226

    Article  PubMed  CAS  Google Scholar 

  33. Imadojemu VA, Gleeson K, Quraishi SA, Kunselman AR, Sinoway LI, Leuenberg UA (2002) Impaired vasodilator responses in obstructive sleep apnea are improved with continuous positive airway pressure therapy. Am J Respir Crit Care Med 165:950–953

    PubMed  Google Scholar 

  34. Ip M, Tse H, Lam B, Tsang K, Lam W (2004) Endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med 169:348–353

    Article  PubMed  Google Scholar 

  35. Jordan W, Reinbacher A, Cohrs S, Grunewald RW, Mayer G, Ruther E, Rodenbeck A (2005) Obstructive sleep apnea: plasma endothelin-1 precursor but not endothelin-1 levels are elevated and decline with nasal continuous positive airway pressure. Peptides 26:1654–1660

    Article  PubMed  CAS  Google Scholar 

  36. Ip M, Lam B, Chan L, Zheng L, Tsang K, Fung P, Lam W (2000) Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med 162:2166–2171

    PubMed  CAS  Google Scholar 

  37. Schulz R, Schmidt D, Blum A, Lopes-Ribeiro X, Lucke C, Mayer K, Olschewski H (2000) Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnea: response to CPAP therapy. Thorax 55:1046–1051

    Article  PubMed  CAS  Google Scholar 

  38. Grebe M, Eisele HJ, Weissmann N, Schaefer C, Tillmanns H, Seeger W, Schulz R (2006) Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med 173:897–901

    Article  PubMed  CAS  Google Scholar 

  39. Kato M, Roberts-Thomson P, Phillips BG et al (2000) Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102:2607–2610

    PubMed  CAS  Google Scholar 

  40. Kasasbeh E, Chi DS, Krishnaswamy G (2006) Inflammatory aspects of sleep apnea and their cardiovascular consequences. South Med J 99:58–81

    Article  PubMed  CAS  Google Scholar 

  41. Takahiro S, Nakano H, Maekawa J, Okamoto Y, Yoshinobu O, Yamauchi M, Kimura H (2004) Obstructive sleep apnea and carotid artery intima-media thickness. Sleep 27:129–133

    Google Scholar 

  42. Drager LF, Bortolotto LA, Lorenzi MC, Figueiredo AC, Krieger EM, Lorenz-Filho G (2005) Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 172:613–618

    Article  PubMed  Google Scholar 

  43. Minoguch K, Yokoe T, Tazaki T, Minoguchi H, Tanaka A, Oda N, Okada S, Ohta S, Naito H, Adachi M (2005) Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med 172:625–630

    Article  Google Scholar 

  44. Dunleavy M, Dooley M, Cox D, Bradford A (2005) Chronic intermittent asphyxia increases in platelet. Exp Physiol 90:411–416

    Article  PubMed  CAS  Google Scholar 

  45. Hui DS, Ko FW, Fok JP, Chan MC, Li TS, Tomlinson B, Cheng G (2004) The effects of nasal continuous positive airway pressure on platelet activation in obstructive sleep apnea syndrome. Chest 125:1768–1775

    Article  PubMed  Google Scholar 

  46. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y (2003) Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol 94:179–184

    PubMed  CAS  Google Scholar 

  47. Tazaki T, Minoguchi K, Yokoe T, Samson K, Minoguchi H, Tanaka A, Watanabe Y, Adachi M (2004) Increased levels and activity of matrix metalloproteinase-9 in obstructive sleep apnea syndrome. Am J Respir Crit Care Med 170:1354–1359

    Article  PubMed  Google Scholar 

  48. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T, Adachi M (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continous positive airway pressure. Circulation 107:1129–1134

    Article  PubMed  CAS  Google Scholar 

  49. Minoguchi K, Tazaki T, Yokoe T, Minoguchi H, Watanabe Y, Yamamoto M, Adachi M (2004) Elevated production of tumor necrosis factor-α by monocytes in patients with obstructive sleep apnea syndrome. Chest 126:1473–1479

    Article  PubMed  CAS  Google Scholar 

  50. Chin K, Nakamura T, Shimizu K, Mishima M, Nakamura T, Miyasaka M, Ohi M (2000) Effects of nasal continuous positive airway pressure on soluble cell adhesion molecules in patients with obstructive sleep apnea syndrome. Am J Med 109:562–567

    Article  PubMed  CAS  Google Scholar 

  51. Kataoka T, Enomoto F, Kim R, Yokoi H, Fujimori M, Sakai Y, Ando I, Ichikawa G, Ikeda K (2004) The effect of surgical treatment of obstructive sleep apnea syndrome on the plasma TNF-α levels. Tohoku J Exp Med 204:267–272

    Article  PubMed  Google Scholar 

  52. Dincer H, O’Neill W (2006) Deleterious effects of sleep-disordered breathing on the heart and vascular system. Respiration 73:124–130

    Article  PubMed  Google Scholar 

  53. Elkind MS (2006) Inflammation, atherosclerosis, and stroke. Neurologist 12:140–148

    Article  PubMed  Google Scholar 

  54. Stoll G, Bendszus M (2006) Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37:1923–1932

    Article  PubMed  CAS  Google Scholar 

  55. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury part I: basic mechanism and in vivo monitoring of ROS. Circulation 108:1912–1916

    Article  PubMed  Google Scholar 

  56. Basilia Z (2005) Nuclear factor-[kappa]B. Crit Care Med 33:S414–S416

    Article  Google Scholar 

  57. Monaco C, Paleolog E (2004) Nuclear factor κB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 61:671–682

    Article  PubMed  CAS  Google Scholar 

  58. Jones WK, Brown M, Ren X, He S, McGuinness M (2005) NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol 3:229–254

    Google Scholar 

  59. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  PubMed  CAS  Google Scholar 

  60. Shishodia S, Aggarwal BB (2002) Nuclear factor-κB activation: a question of life or death. J Biochem Mol Biol 35:28–40

    PubMed  CAS  Google Scholar 

  61. Barnes PJ, Karin M (1997) Nuclear factor-κB—A pivotal transcription factor in chronic inflammatory disease. N Engl J Med 336:1066–1071

    Article  PubMed  CAS  Google Scholar 

  62. Jones WK, Brown M, Wilhide M, He S, Ren X (2005) NF-kappaB in cardiovascular disease: diverse and specific effects of a “general” transcription factor? Cardiovasc Toxicol 5:183–202

    Article  PubMed  CAS  Google Scholar 

  63. Kawano S, Kubota T, Monden Y, Tsutsumi T, Inoue T, Kawamura N, Tsutsui H, Sunagawa K (2006) Blockade of NF-κB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol 291:H1337–H1344

    Article  PubMed  CAS  Google Scholar 

  64. Olivier S, Robe P, Bours V (2006) Can NF-κB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 72:1054–1068

    Article  PubMed  CAS  Google Scholar 

  65. Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schonbeck U, Libby P (2006) Metformin inhibits proinflammatory responses and nuclear factor kappa B in human vascular wall cells. Arterioscler Thromb Vasc Biol 26:611–617

    Article  PubMed  CAS  Google Scholar 

  66. Pergola C, Rossi A, Dugo P, Cuzzocrea S, Sautebin L (2006) Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide 15:30–39

    Article  PubMed  CAS  Google Scholar 

  67. Lu H, Li J, Zhang D, Stoner GD, Huang C (2006) Molecular mechanisms of involved in chemoprevention of black raspberry extracts: from transcription factors to their target genes. Nutr Cancer 54:69–78

    Article  PubMed  CAS  Google Scholar 

  68. Jacobo-herrera NJ, Vartianinen N, Bremner P, Gibbons S, Koistinaho J, Heinrich M (2006) NF-kappaB modulators from Valeriana officinalis. Phytother Res 20:917–919

    Article  PubMed  CAS  Google Scholar 

  69. Mandrekar P, Catalano D, White B, Szabo G (2006) Moderate alcohol intake in humans attenuates monocyte inflammatory response: inhibition of nuclear regulatory factor kappa B and induction of interleukin 10. Alcohol Clin Exp Res 30:135–139

    Article  PubMed  CAS  Google Scholar 

  70. Michiels C, Minet E, Mottet D, Raes M (2002) Regulation of gene expression by oxygen: NF-κB and HIF-1, two extremes. Free Radic Biol Med 33:1231–1242

    Article  PubMed  CAS  Google Scholar 

  71. Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450:363–371

    Article  PubMed  CAS  Google Scholar 

  72. Alzoghaibi MA, BaHammam A (2005) Lipid peroxides, superoxide dismutase and circulating IL-8 and GCP-2 in patients with severe obstructive sleep apnea: a pilot study. Sleep Breath 9:119–126

    Article  PubMed  Google Scholar 

  73. Htoo AK, Greenber H, Tongia S, Chen G, Henderson T, Wilson D, Liu D (2006) Activation of nuclear factor κB in obstructive sleep apnea pathways leading to systemic inflammation. Sleep Breath 10:43–50

    Article  PubMed  Google Scholar 

  74. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343:591–596

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Scharf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A., Scharf, S.M. Obstructive sleep apnea, cardiovascular disease, and inflammation—is NF-κB the key?. Sleep Breath 11, 69–76 (2007). https://doi.org/10.1007/s11325-007-0106-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-007-0106-1

Keywords

Navigation