Skip to main content

Advertisement

Log in

Value of Primary Rectal Tumor PET/MRI in the Prediction of Synchronic Metastatic Disease

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

A Correction to this article was published on 04 January 2022

This article has been updated

Abstract

Purpose

To analyze the associations between positron emission tomography (PET)/magnetic resonance imaging (MRI) features for primary rectal tumors and metastases.

Procedures

Between November 2016 and April 2018, 101 patients with rectal adenocarcinoma were included in this prospective study (NCT02537340) for whole-body PET/MRI for baseline staging. Two readers analyzed the PET/MRI; they assessed the semiquantitative PET features of the primary tumor and the N- and M-stages. Another reader analyzed the MRI features for locoregional staging. The reference standard for confirming metastatic disease was biopsy or imaging follow-up. Non-parametric tests were used to compare the PET/MRI features of the participants with or without metastatic disease. Binary logistic regression was used to evaluate the associations between the primary tumor PET/MRI features and metastatic disease.

Results

A total of 101 consecutive participants (median age 62 years; range: 33–87 years) were included. Metastases were detected in 35.6% (36 of 101) of the participants. Among the PET/MRI features, higher tumor lesion glycolysis (352.95 vs 242.70; P = .46) and metabolic tumor volume (36.15 vs 26.20; P = .03) were more frequent in patients with than in those without metastases. Additionally, patients with metastases had a higher incidence of PET-positive (64% vs 32%; P = .009) and MRI-positive (56% vs 32%; P = .03) mesorectal lymph nodes, extramural vascular invasion (86% vs 49%; P > .001), and involvement of mesorectal fascia (64% vs 42%; P = .04); there were also differences between the mrT stages of these two groups (P = .008). No differences in the maximum standardized uptake values for the primary tumors in patients with and without metastases were observed (18.9 vs 19.1; P = .56). Multivariable logistic regression showed that extramural vascular invasion on MRI was the only significant predictor (adjusted odds ratio, 3.8 [95% CI: 1.1, 13.9]; P = .001).

Conclusion

PET/MRI facilitated the identification of participants with a high risk of metastatic disease, though these findings were based mainly on MRI features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

References

  1. Engstrom PF, Arnoletti JP, Iii ABB et al (2009) Rectal cancer. JNCCN J Natl Compr Cancer Netw 7:838–881

    Article  Google Scholar 

  2. van de Velde CJH, Boelens PG, Borras JM et al (2014) EURECCA colorectal: multidisciplinary management: European consensus conference colon & rectum. Eur J Cancer 50:1.e1-1.e34. https://doi.org/10.1016/j.ejca.2013.06.048

    Article  Google Scholar 

  3. Schmoll HJ, Van Cutsem E, Stein A et al (2012) ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol 23:2479–2516. https://doi.org/10.1093/annonc/mds236

    Article  CAS  PubMed  Google Scholar 

  4. Ozis SE, Soydal C, Akyol C et al (2014) The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in the primary staging of rectal cancer. World J Surg Oncol 12:26. https://doi.org/10.1186/1477-7819-12-26

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eglinton T, Luck A, Bartholomeusz D et al (2010) Positron-emission tomography/computed tomography (PET/CT) in the initial staging of primary rectal cancer. Colorectal Dis 12:667–673. https://doi.org/10.1111/j.1463-1318.2009.01873.x

    Article  CAS  PubMed  Google Scholar 

  6. Whaley JT, Fernandes AT, Sackmann R et al (2014) Clinical utility of integrated positron emission tomography/computed tomography imaging in the clinical management and radiation treatment planning of locally advanced rectal cancer. Pract Radiat Oncol 4:226–232. https://doi.org/10.1016/j.prro.2013.09.002

    Article  PubMed  Google Scholar 

  7. Jo HJ, Kim S-J, Kim IJ, Kim S (2014) Predictive value of volumetric parameters measured by F-18 FDG PET/CT for lymph node status in patients with surgically resected rectal cancer. Ann Nucl Med 28:196–202. https://doi.org/10.1007/s12149-014-0809-x

    Article  PubMed  Google Scholar 

  8. Li Q, Zheng R, Ling Y et al (2016) Prediction of tumor response after neoadjuvant chemoradiotherapy in rectal cancer using tomography – computed tomography and serum carcinoembryonic antigen: a prospective study. Abdom Radiol 41:1448–1455. https://doi.org/10.1007/s00261-016-0698-7

    Article  CAS  Google Scholar 

  9. Jo HJ, Kim S-J, Lee HY, Kim IJ (2014) Prediction of survival and cancer recurrence using metabolic volumetric parameters measured by 18F-FDG PET/CT in patients with surgically resected rectal cancer. Clin Nucl Med 39:493–497. https://doi.org/10.1097/RLU.0000000000000438

    Article  PubMed  Google Scholar 

  10. Catalano OA, Lee SI, Parente C et al (2021) Improving staging of rectal cancer in the pelvis: the role of PET/MRI. Eur J Nucl Med Mol Imaging 48:1235–1245. https://doi.org/10.1007/s00259-020-05036-x

    Article  PubMed  Google Scholar 

  11. Rutegård MK, Båtsman M, Axelsson J et al (2019) PET/MRI and PET/CT hybrid imaging of rectal cancer - description and initial observations from the RECTOPET (REctal Cancer trial on PET/MRI/CT) study. Cancer Imaging 19(1):52. https://doi.org/10.1186/s40644-019-0237-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atkinson W, Catana C, Abramson JS et al (2016) Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients. Abdom Radiol 41:1338–1348. https://doi.org/10.1007/s00261-016-0638-6

    Article  Google Scholar 

  13. Queiroz MA, Ortega CD, Ferreira FR et al (2021) Diagnostic accuracy of FDG-PET/MRI versus pelvic MRI and thoracic and abdominal CT for detecting synchronous distant metastases in rectal cancer patients. Eur J Nucl Med Mol Imaging 48:186–195. https://doi.org/10.1007/s00259-020-04911-x

    Article  PubMed  Google Scholar 

  14. Furtado FS, Suarez-Weiss KE, Vangel M et al (2021) Clinical impact of PET/MRI in oligometastatic colorectal cancer. Br J Cancer 125:975–982. https://doi.org/10.1038/s41416-021-01494-8

    Article  CAS  PubMed  Google Scholar 

  15. Gaitanidis A, Alevizakos M, Tsaroucha A et al (2018) Predictive nomograms for synchronous distant metastasis in rectal cancer. J Gastrointest Surg 22:1268–1276. https://doi.org/10.1007/s11605-018-3767-0

    Article  PubMed  Google Scholar 

  16. Liu H, Cui Y, Shen W, et al (2016) Pretreatment magnetic resonance imaging of regional lymph nodes with carcinoembryonic antigen in prediction of synchronous distant metastasis in patients with rectal cancer. Oncotarget 7(19):27199–207. https://doi.org/10.18632/oncotarget.7979

  17. Amorim BJ, Torrado-Carvajal A, Esfahani SA et al (2020) PET/MRI radiomics in rectal cancer: a pilot study on the correlation between PET- and MRI-derived image features with a clinical interpretation. Mol imaging Biol 22:1438–1445. https://doi.org/10.1007/s11307-020-01484-x

    Article  CAS  PubMed  Google Scholar 

  18. Smith NJ, Barbachano Y, Norman AR et al (2008) Prognostic significance of magnetic resonance imaging-detected extramural vascular invasion in rectal cancer. Br J Surg 95:229–236. https://doi.org/10.1002/bjs.5917

    Article  CAS  PubMed  Google Scholar 

  19. Beets-Tan RGH, Lambregts DMJ, Maas M et al (2018) Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 28:1465–1475. https://doi.org/10.1007/s00330-017-5026-2

    Article  PubMed  Google Scholar 

  20. Brendle C, Schwenzer NF, Rempp H et al (2016) Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series. Eur J Nucl Med Mol Imaging 43:123–132. https://doi.org/10.1007/s00259-015-3137-z

    Article  CAS  PubMed  Google Scholar 

  21. Kang B, Lee JM, Song YS et al (2016) Added value of integrated whole-body PET/MRI for evaluation of colorectal cancer: comparison with contrast-enhanced MDCT. Am J Roentgenol 206:W10–W20. https://doi.org/10.2214/AJR.14.13818

    Article  Google Scholar 

  22. Tudyka V, Blomqvist L, Beets-Tan RGH et al (2014) EURECCA consensus conference highlights about colon & rectal cancer multidisciplinary management: the radiology experts review. Eur J Surg Oncol 40:469–475. https://doi.org/10.1016/j.ejso.2013.10.029

    Article  CAS  PubMed  Google Scholar 

  23. Dewhurst C, Rosen MP, Blake MA et al (2012) ACR appropriateness criteria pretreatment staging of colorectal cancer. J Am Coll Radiol 9:775–781. https://doi.org/10.1016/j.jacr.2012.07.025

    Article  PubMed  Google Scholar 

  24. Riihimaki M, Hemminki A, Sundquist J, Hemminki K (2016) Patterns of metastasis in colon and rectal cancer. Sci Rep 6:1–9. https://doi.org/10.1038/srep29765

    Article  CAS  Google Scholar 

  25. Quadros CA, Falcão MF, Carvalho ME et al (2012) Metastases to retroperitoneal or lateral pelvic lymph nodes indicated unfavorable survival and high pelvic recurrence rates in a cohort of 102 patients with low rectal adenocarcinoma. J Surg Oncol 106:653–658. https://doi.org/10.1002/jso.23144

    Article  PubMed  Google Scholar 

  26. Hope TA, Kassam Z, Loening A et al (2019) The use of PET/MRI for imaging rectal cancer. Abdom Radiol (NY) 44(11):3559–3568. https://doi.org/10.1007/s00261-019-02089-x

    Article  PubMed Central  Google Scholar 

  27. Yoon JH, Lee JM, Chang W et al (2020) Initial M staging of rectal cancer: FDG PET/MRI with a hepatocyte-specific contrast agent versus contrast-enhanced CT. Radiology 294:310–319. https://doi.org/10.1148/radiol.2019190794

    Article  PubMed  Google Scholar 

  28. MERCURY Study Group (2006) Diagnostic accuracy of preoperative magnetic resonance imaging in predicting curative resection of rectal cancer: prospective observational study. BMJ 333:779. https://doi.org/10.1136/bmj.38937.646400.55

    Article  PubMed Central  Google Scholar 

  29. Hunter CJ, Garant A, Vuong T et al (2012) Adverse features on rectal MRI identify a high-risk group that may benefit from more intensive preoperative staging and treatment. Ann Surg Oncol 19:1199–1205. https://doi.org/10.1245/s10434-011-2036-1

    Article  PubMed  Google Scholar 

  30. Chang GJ, You YN, Park IJ et al (2012) Pretreatment high-resolution rectal MRI and treatment response to neoadjuvant chemoradiation. Dis Colon Rectum 55:371–377. https://doi.org/10.1097/DCR.0b013e31824678e3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taylor FGM, Quirke P, Heald RJ et al (2011) Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study. Ann Surg 253:711–719. https://doi.org/10.1097/SLA.0b013e31820b8d52

    Article  PubMed  Google Scholar 

  32. Siddiqui MRS, Simillis C, Hunter C et al (2017) A meta-analysis comparing the risk of metastases in patients with rectal cancer and MRI-detected extramural vascular invasion (mrEMVI) vs mrEMVI-negative cases. Br J Cancer 116:1513–1519. https://doi.org/10.1038/bjc.2017.99

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim H, Kim M-J, Kim NK et al (2014) MRI-detected extramural vascular invasion is an independent prognostic factor for synchronous metastasis in patients with rectal cancer. Eur Radiol 25:1347–1355. https://doi.org/10.1007/s00330-014-3527-9

    Article  PubMed  Google Scholar 

  34. Chand M, Evans J, Swift RI et al (2015) The prognostic significance of postchemoradiotherapy high-resolution MRI and histopathology detected extramural venous invasion in rectal cancer. Ann Surg 261:473–479. https://doi.org/10.1097/SLA.0000000000000848

    Article  PubMed  Google Scholar 

  35. Zhang X-Y, Wang S, Li X-T et al (2018) MRI of extramural venous invasion in locally advanced rectal cancer: relationship to tumor recurrence and overall survival. Radiology 289:677–685. https://doi.org/10.1148/radiol.2018172889

    Article  PubMed  Google Scholar 

  36. Liao CY, Chen SW, Wu YC et al (2014) Correlations between 18F-FDG PET/CT parameters and pathological findings in patients with rectal cancer. Clin Nucl Med 39:e40-5. https://doi.org/10.1097/RLU.0b013e318292f0f6

    Article  PubMed  Google Scholar 

  37. Dos Anjos DA, Perez RO, Habr-Gama A et al (2016) Semiquantitative volumetry by sequential PET/CT may improve prediction of complete response to neoadjuvant chemoradiation in patients with distal rectal cancer. Dis Colon Rectum 59:805–812. https://doi.org/10.1097/DCR.0000000000000655

    Article  PubMed  Google Scholar 

  38. Bundschuh RA, Dinges J, Neumann L et al (2014) Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med 55:891–897. https://doi.org/10.2967/jnumed.113.127340

    Article  CAS  PubMed  Google Scholar 

  39. Bazan JG, Koong AC, Kapp DS et al (2013) Metabolic tumor volume predicts disease progression and survival in patients with squamous cell carcinoma of the anal canal. J Nucl Med 54:27–32. https://doi.org/10.2967/jnumed.112.109470

    Article  PubMed  Google Scholar 

  40. Crimì F, Valeggia S, Baffoni L et al (2021) [18F]FDG PET/MRI in rectal cancer. Ann Nucl Med 35:281–290

    Article  Google Scholar 

  41. Nensa F, Beiderwellen K, Heusch P, Wetter A (2014) Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol 20:438–447. https://doi.org/10.5152/dir.2014.14008

    Article  PubMed  PubMed Central  Google Scholar 

  42. Catalano OA, Coutinho AM, Sahani DV et al (2017) Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR. Abdom Radiol 42:1141–1151. https://doi.org/10.1007/s00261-016-0985-3

    Article  Google Scholar 

  43. Lee SJ, Seo HJ, Kang KW et al (2015) Clinical performance of whole-body 18F-FDG PET/Dixon-VIBE, T1-weighted, and T2-weighted MRI protocol in colorectal cancer. Clin Nucl Med 40:e392–e398. https://doi.org/10.1097/RLU.0000000000000812

    Article  PubMed  Google Scholar 

  44. Viglianti BL, Wale DJ, Wong KK et al (2018) Effects of tumor burden on reference tissue standardized uptake for PET imaging: modification of PERCIST criteria. Radiology 287:993–1002. https://doi.org/10.1148/radiol.2018171356

    Article  PubMed  Google Scholar 

  45. Ilyas H, Mikhaeel NG, Dunn JT et al (2018) Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-018-3953-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

GE Healthcare partially financed this study, covering the costs of the PET/MRI, including the dose of fluorine-18 deoxyglucose (18F-FDG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Queiroz.

Ethics declarations

Ethics Approval and Consent to Participate

The institutional review board approved this prospective study, and all participants signed an informed consent form. This study is registered on clinicaltrials.gov with the identification number NCT02537340.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, M.A., Ortega, C.D., Ferreira, F.R. et al. Value of Primary Rectal Tumor PET/MRI in the Prediction of Synchronic Metastatic Disease. Mol Imaging Biol 24, 453–463 (2022). https://doi.org/10.1007/s11307-021-01674-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01674-1

Keywords

Navigation