Skip to main content

Advertisement

Log in

The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The applications of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/X-ray computed tomography (PET/CT) in the management of patients with breast cancer have been extensively studied. According to these studies, PET/CT is not routinely performed for the diagnosis of primary breast cancer, although PET/CT in specific subtypes of breast cancer correlates with histopathologic features of the primary tumor. PET/CT can detect metastases to mediastinal, axial, and internal mammary nodes, but it cannot replace the sentinel node biopsy. In detection of distant metastases, this imaging tool may have a better accuracy in detecting lytic bone metastases compared to bone scintigraphy. Thus, PET/CT is recommended when advanced-stage disease is suspected, and conventional modalities are inconclusive. Also, PET/CT has a high sensitivity and specificity to detect loco-regional recurrence and is recommended in asymptomatic patients with rising tumor markers. Numerous studies support the future role of PET/CT in prediction of response to neoadjuvant chemotherapy (NAC). PET/CT has a higher diagnostic value for prognostic risk stratification in comparison with conventional modalities. With the continuing research on the treatment planning and evaluation of patients with breast cancer, the role of PET/CT can be further extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49:1374–1403

    Article  CAS  Google Scholar 

  2. Khatcheressian JL, Hurley P, Bantug E et al (2013) Breast cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 31:961–965

    Article  CAS  PubMed  Google Scholar 

  3. Aukema TS, Rutgers EJ, Vogel WV et al (2010) The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques. Eur J Surg Oncol 36:387–392

    Article  CAS  PubMed  Google Scholar 

  4. Kalles V, Zografos GC, Provatopoulou X et al (2013) The current status of positron emission mammography in breast cancer diagnosis. Breast Cancer Tokyo 20:123–130

    Article  Google Scholar 

  5. Moadel RM (2011) Breast cancer imaging devices. Semin Nucl Med 41:229–241

    Article  PubMed  Google Scholar 

  6. Jacobs MA, Wolff AC, Macura KJ et al (2015) Multiparametric and multimodality functional radiological imaging for breast cancer diagnosis and early treatment response assessment. J Natl Cancer Inst Monogr 2015:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lebron L, Greenspan D, Pandit-Taskar N (2015) PET imaging of breast cancer: role in patient management. PET Clin 10:159–195

    Article  PubMed  Google Scholar 

  8. Tchou J, Sonnad SS, Bergey MR et al (2010) Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 12:657–662

    Article  PubMed  Google Scholar 

  9. Pritchard KI, Julian JA, Holloway CM et al (2012) Prospective study of 2-[18F]fluorodeoxyglucose positron emission tomography in the assessment of regional nodal spread of disease in patients with breast cancer: an Ontario clinical oncology group study. J Clin Oncol 30:1274–1279

    Article  CAS  PubMed  Google Scholar 

  10. Mankoff DA, Specht JM, Eubank WB, Kessler L (2012) [18F]fluorodeoxyglucose positron emission tomography-computed tomography in breast cancer: when… and when not? J Clin Oncol 30:1252–1254

    Article  CAS  PubMed  Google Scholar 

  11. Hildebrandt MG, Kodahl AR, Teilmann-Jorgensen D, Mogensen O, Jensen PT (2015) [18F]fluorodeoxyglucose PET/computed tomography in breast cancer and gynecologic cancers: a literature review. PET Clin 10:89–104

    Article  PubMed  Google Scholar 

  12. Bernsdorf M, Graff J (2014) Clinical application of 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in breast cancer. Clin Physiol Funct Imaging 34:426–433

    Article  CAS  PubMed  Google Scholar 

  13. Warning K, Hildebrandt MG, Kristensen B, Ewertz M (2011) Utility of 18FDG-PET/CT in breast cancer diagnostics—a systematic review. Dan Med Bull 58:A4289

    PubMed  Google Scholar 

  14. Zhang X, Wu F, Han P (2014) The role of (18)F-FDG PET/CT in the diagnosis of breast cancer and lymph nodes metastases and micrometastases may be limited. Hell J Nucl Med 17:177–183

    PubMed  Google Scholar 

  15. Groheux D, Giacchetti S, Moretti J-L et al (2010) Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38:426–435

    Article  PubMed  Google Scholar 

  16. Gilardi L, Colleoni M, Paganelli G (2013) PET/CT and breast cancer subtypes. Eur J Nucl Med Mol Imaging 40:1301–1303

    Article  PubMed  Google Scholar 

  17. An YS, Kang DK, Jung YS, Han S, Kim TH (2015) Tumor metabolism and perfusion ratio assessed by 18F-FDG PET/CT and DCE-MRI in breast cancer patients: correlation with tumor subtype and histologic prognostic factors. Eur J Radiol 84:1365–1370

    Article  PubMed  Google Scholar 

  18. Garcia Vicente AM, Soriano Castrejon A, Cruz Mora MA et al (2014) Dual time point 2-deoxy-2-[18F]fluoro-D-glucose PET/CT: nodal staging in locally advanced breast cancer. Rev Esp Med Nucl IMA 33:1–5

    CAS  Google Scholar 

  19. Rong J, Wang S, Ding Q, Yun M, Zheng Z, Ye S (2013) Comparison of 18FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis. Surg Oncol 22:86–91

    Article  PubMed  Google Scholar 

  20. Yoon HJ, Kang KW, Chun IK et al (2014) Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 41:1534–1543

    Article  CAS  PubMed  Google Scholar 

  21. Miyake KK, Nakamoto Y, Kanao S et al (2014) Journal Club: diagnostic value of 18F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer. Am J Roentgenol 203:272–279

    Article  Google Scholar 

  22. Koo HR, Park JS, Kang KW et al (2014) 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes. Eur Radiol 24:610–618

    Article  PubMed  Google Scholar 

  23. Soussan M, Orlhac F, Boubaya M et al (2014) Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS One 9:e94017

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krammer J, Schnitzer A, Kaiser CG et al (2015) 18F-FDG PET/CT for initial staging in breast cancer patients—is there a relevant impact on treatment planning compared to conventional staging modalities? Eur Radiol 25:2460–2469

    Article  CAS  PubMed  Google Scholar 

  25. Groves AM, Shastry M, Ben-Haim S et al (2012) Defining the role of PET-CT in staging early breast cancer. Oncologist 17:613–619

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gilardi L, Fumagalli L, Paganelli G (2013) Preoperative PET/CT in early-stage breast cancer: is the TNM classification enough? Ann Oncol 24:852

    Article  CAS  PubMed  Google Scholar 

  27. Champion L, Lerebours F, Cherel P et al (2013) 18F-FDG PET/CT imaging versus dynamic contrast-enhanced CT for staging and prognosis of inflammatory breast cancer. Eur J Nucl Med Mol Imaging 40:1206–1213

    Article  CAS  PubMed  Google Scholar 

  28. Peare R, Staff RT, Heys SD (2010) The use of FDG-PET in assessing axillary lymph node status in breast cancer: a systematic review and meta-analysis of the literature. Breast Cancer Res Treat 123:281–290

    Article  PubMed  Google Scholar 

  29. Robertson IJ, Hand F, Kell MR (2011) FDG-PET/CT in the staging of local/regional metastases in breast cancer. Breast 20:491–494

    Article  PubMed  Google Scholar 

  30. Riegger C, Koeninger A, Hartung V et al (2012) Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients. Acta Radiol 53:1092–1098

    Article  PubMed  Google Scholar 

  31. Cochet A, Dygai-Cochet I, Riedinger JM et al (2014) 18F-FDG PET/CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations. Eur J Nucl Med Mol Imaging 41:428–437

    Article  PubMed  Google Scholar 

  32. Sohn YM, Hong IK, Han K (2014) Role of [18F]fluorodeoxyglucose positron emission tomography-computed tomography, sonography, and sonographically guided fine-needle aspiration biopsy in the diagnosis of axillary lymph nodes in patients with breast cancer: comparison of diagnostic performance. J Ultrasound Med 33:1013–1021

    Article  PubMed  Google Scholar 

  33. Machida Y, Kubota K, Katayama T, Toriihara A, Shibuya H (2013) Diagnostic performance of fluorodeoxyglucose-positron emission tomography/computed tomography combined with ultrasonography-guided fine needle aspiration cytology for identifying axillary lymph node status in patients with breast cancer. Eur J Surg Oncol 39:26–30

    Article  CAS  PubMed  Google Scholar 

  34. Hahn S, Hecktor J, Grabellus F et al (2012) Diagnostic accuracy of dual-time-point 18F-FDG PET/CT for the detection of axillary lymph node metastases in breast cancer patients. Acta Radiol 53:518–523

    Article  PubMed  Google Scholar 

  35. Kim JY, Lee SH, Kim S et al (2015) Tumour 18F-FDG uptake on preoperative PET/CT may predict axillary lymph node metastasis in ER-positive/HER2-negative and HER2-positive breast cancer subtypes. Eur Radiol 25:1172–1181

    Article  PubMed  Google Scholar 

  36. Seo MJ, Lee JJ, Kim HO et al (2014) Detection of internal mammary lymph node metastasis with 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with stage III breast cancer. Eur J Nucl Med Mol Imaging 41:438–445

    Article  PubMed  Google Scholar 

  37. An YY, Kim SH, Kang BJ, Lee AW (2015) Comparisons of positron emission tomography/computed tomography and ultrasound imaging for detection of internal mammary lymph node metastases in patients with breast cancer and pathologic correlation by ultrasound-guided biopsy procedures. J Ultrasound Med 34:1385–1394

    Article  PubMed  Google Scholar 

  38. Riedl CC, Slobod E, Jochelson M et al (2014) Retrospective analysis of 18F-FDG PET/CT for staging asymptomatic breast cancer patients younger than 40 years. J Nucl Med 55:1578–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pires AO, Borges US, Lopes-Costa PV, Gebrim LH, da Silva BB (2014) Evaluation of bone metastases from breast cancer by bone scintigraphy and positron emission tomography/computed tomography imaging. Eur J Obstet Gynecol Reprod Biol 180:138–141

    Article  PubMed  Google Scholar 

  40. Pan L, Han Y, Sun X, Liu J, Gang H (2010) FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis. J Cancer Res Clin Oncol 136:1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong S, Li J, Wang S (2013) 18FDG PET-CT for diagnosis of distant metastases in breast cancer patients. A meta-analysis. Surg Oncol 22:139–143

    Article  PubMed  Google Scholar 

  42. Sun Z, Yi YL, Liu Y, Xiong JP, He CZ (2015) Comparison of whole-body PET/PET-CT and conventional imaging procedures for distant metastasis staging in patients with breast cancer: a meta-analysis. Eur J Gynaecol Oncol 36:672–676

    PubMed  Google Scholar 

  43. Manohar K, Mittal BR, Bhoil A, Bhattacharya A, Singh G (2013) Role of 18F-FDG PET/CT in identifying distant metastatic disease missed by conventional imaging in patients with locally advanced breast cancer. Nucl Med Commun 34:557–561

    Article  CAS  PubMed  Google Scholar 

  44. Niikura N, Costelloe CM, Madewell JE et al (2011) FDG-PET/CT compared with conventional imaging in the detection of distant metastases of primary breast cancer. Oncologist 16:1111–1119

    Article  PubMed  PubMed Central  Google Scholar 

  45. Senkus E, Kyriakides S, Ohno S et al (2015) Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol Suppl 5:v8–30

    Article  Google Scholar 

  46. Koolen BB, Vegt E, Rutgers EJ et al (2012) FDG-avid sclerotic bone metastases in breast cancer patients: a PET/CT case series. Ann Nucl Med 26:86–91

    Article  PubMed  Google Scholar 

  47. Teke F, Teke M, Inal A et al (2015) Significance of hormone receptor status in comparison of 18F-FDG-PET/CT and 99mTc-MDP bone scintigraphy for evaluating bone metastases in patients with breast cancer: single center experience. Asian Pac J Cancer Prev 16:387–391

    Article  PubMed  Google Scholar 

  48. Evangelista L, Panunzio A, Polverosi R et al (2012) Early bone marrow metastasis detection: the additional value of FDG-PET/CT vs. CT imaging. Biomed Pharmacother 66:448–453

    Article  PubMed  Google Scholar 

  49. Gaeta CM, Vercher-Conejero JL, Sher AC et al (2013) Recurrent and metastatic breast cancer PET, PET/CT, PET/MRI: FDG and new biomarkers. Q J Nucl Med Mol Imaging 57:352–366

    CAS  PubMed  Google Scholar 

  50. Sen F, Akpinar AT, Ogur U, Duman G, Tamgac F, Alper E (2013) The impact of PET/CT imaging performed in the early postoperative period on the management of breast cancer patients. Nucl Med Commun 34:571–576

    Article  PubMed  Google Scholar 

  51. Groheux D, Hindie E (2015) Breast cancer staging: to which women should 18F-FDG PET/CT be offered? J Nucl Med 56:1293

    Article  PubMed  Google Scholar 

  52. Groheux D, Giacchetti S, Espie M et al (2011) The yield of 18F-FDG PET/CT in patients with clinical stage IIA, IIB, or IIIA breast cancer: a prospective study. J Nucl Med 52:1526–1534

    Article  CAS  PubMed  Google Scholar 

  53. Bernsdorf M, Berthelsen AK, Wielenga VT et al (2012) Preoperative PET/CT in early-stage breast cancer. Ann Oncol 23:2277–2282

    Article  CAS  PubMed  Google Scholar 

  54. Chen S, Ibrahim NK, Yan Y, Wong ST, Wang H, Wong FC (2015) Risk stratification in patients with advanced-stage breast cancer by pretreatment [18F]FDG PET/CT. Cancer 121:3965–3974

    Article  CAS  PubMed  Google Scholar 

  55. Kadoya T, Aogi K, Kiyoto S, Masumoto N, Sugawara Y, Okada M (2013) Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: a multi-institute study. Breast Cancer Res Treat 141:269–275

    Article  PubMed  PubMed Central  Google Scholar 

  56. Baba S, Isoda T, Maruoka Y et al (2014) Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging. J Nucl Med 55:736–742

    Article  CAS  PubMed  Google Scholar 

  57. Chang CC, Tu HP, Chen YW, Lin CY, Hou MF (2014) Tumour and lymph node uptakes on dual-phased 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography correlate with prognostic parameters in breast cancer. J Int Med Res 42:1209–1221

    Article  PubMed  Google Scholar 

  58. Aogi K, Kadoya T, Sugawara Y et al (2015) Utility of (18)F FDG-PET/CT for predicting prognosis of luminal-type breast cancer. Breast Cancer Res Treat 150:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi BB, Kim SH, Kang BJ et al (2012) Diffusion-weighted imaging and FDG PET/CT: predicting the prognoses with apparent diffusion coefficient values and maximum standardized uptake values in patients with invasive ductal carcinoma. World J Surg Oncol 10:126

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gallivanone F, Canevari C, Sassi I et al (2014) Partial volume corrected 18F-FDG PET mean standardized uptake value correlates with prognostic factors in breast cancer. Q J Nucl Med Mol Imaging 58:424–439

    CAS  PubMed  Google Scholar 

  61. Jo JE, Kim JY, Lee SH, Kim S, Kang T (2015) Preoperative 18F-FDG PET/CT predicts disease-free survival in patients with primary invasive ductal breast cancer. Acta Radiol 56:1463–1470

    Article  PubMed  Google Scholar 

  62. Ohara M, Shigematsu H, Tsutani Y et al (2013) Role of FDG-PET/CT in evaluating surgical outcomes of operable breast cancer—usefulness for malignant grade of triple-negative breast cancer. Breast 22:958–963

    Article  PubMed  Google Scholar 

  63. Morris PG, Ulaner GA, Eaton A et al (2012) Standardized uptake value by positron emission tomography/computed tomography as a prognostic variable in metastatic breast cancer. Cancer 118:5454–5462

    Article  PubMed  Google Scholar 

  64. Song BI, Lee SW, Jeong SY et al (2012) 18F-FDG uptake by metastatic axillary lymph nodes on pretreatment PET/CT as a prognostic factor for recurrence in patients with invasive ductal breast cancer. J Nucl Med 53:1337–1344

    Article  CAS  PubMed  Google Scholar 

  65. Ahn SG, Park JT, Lee HM et al (2014) Standardized uptake value of 18F-fluorodeoxyglucose positron emission tomography for prediction of tumor recurrence in breast cancer beyond tumor burden. Breast Cancer Res 16:502

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tural D, Kivrak Salim D, Mutlu H et al (2015) Is there any relation between PET-CT SUVmax value and prognostic factors in locally advanced breast cancer? J BUON 20:1282–1286

    PubMed  Google Scholar 

  67. Oh JK, Chung YA, Kim YS et al (2014) Value of F-18 FDG PET/CT in detection and prognostication of isolated extra-axillary lymph node recurrences in postoperative breast cancer. Biomed Mater Eng 24:1173–1184

    CAS  PubMed  Google Scholar 

  68. Jung NY, Kim SH, Choi BB, Kim SH, Sung MS (2015) Associations between the standardized uptake value of 18F-FDG PET/CT and the prognostic factors of invasive lobular carcinoma: in comparison with invasive ductal carcinoma. World J Surg Oncol 13:113

    Article  PubMed  PubMed Central  Google Scholar 

  69. Satoh Y, Nambu A, Ichikawa T, Onishi H (2014) Whole-body total lesion glycolysis measured on fluorodeoxyglucose positron emission tomography/computed tomography as a prognostic variable in metastatic breast cancer. BMC Cancer 14:525

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nakajima N, Kataoka M, Sugawara Y et al (2013) Volume-based parameters of 18F-fluorodeoxyglucose positron emission tomography/computed tomography improve disease recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive axillary lymph nodes. Int J Radiat Oncol Biol Phys 87:738–746

    Article  PubMed  Google Scholar 

  71. Ogino K, Nakajima M, Kakuta M et al (2014) Utility of FDG-PET/CT in the evaluation of the response of locally advanced breast cancer to neoadjuvant chemotherapy. Int Surg 99:309–318

    Article  PubMed  PubMed Central  Google Scholar 

  72. Garcia Vicente AM, Cruz Mora MA, Leon Martin AA et al (2014) Glycolytic activity with 18F-FDG PET/CT predicts final neoadjuvant chemotherapy response in breast cancer. Tumour Biol 35:11613–11620

    Article  CAS  PubMed  Google Scholar 

  73. Groheux D, Giacchetti S, Delord M et al (2015) Prognostic impact of 18F-FDG PET/CT staging and of pathological response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Nucl Med Mol Imaging 42:377–385

    Article  CAS  PubMed  Google Scholar 

  74. Pahk K, Rhee S, Cho J et al (2014) The role of interim 18F-FDG PET/CT in predicting early response to neoadjuvant chemotherapy in breast cancer. Anticancer Res 34:4447–4455

    CAS  PubMed  Google Scholar 

  75. An YY, Kim SH, Kang BJ, Lee AW (2015) Treatment response evaluation of breast cancer after neoadjuvant chemotherapy and usefulness of the imaging parameters of MRI and PET/CT. J Korean Med Sci 30:808–815

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pengel KE, Koolen BB, Loo CE et al (2014) Combined use of 18F-FDG PET/CT and MRI for response monitoring of breast cancer during neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 41:1515–1524

    Article  CAS  PubMed  Google Scholar 

  77. Cheng X, Li Y, Liu B, Xu Z, Bao L, Wang J (2012) 18F-FDG PET/CT and PET for evaluation of pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Acta Radiol 53:615–627

    Article  PubMed  Google Scholar 

  78. Vicente AMG, Castrejón ÁS, Martín AL et al (2014) Early and delayed prediction of axillary lymph node neoadjuvant response by 18F-FDG PET/CT in patients with locally advanced breast cancer. Eur J Nucl Med Mol Imaging 41:1309–1318

    Article  CAS  Google Scholar 

  79. Tian F, Shen G, Deng Y, Diao W, Jia Z (2017) The accuracy of 18F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review. Eur Radiol 27:4786–4796

  80. Groheux D, Espie M, Giacchetti S, Hindie E (2013) Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266:388–405

    Article  PubMed  Google Scholar 

  81. Groheux D, Majdoub M, Sanna A et al (2015) Early metabolic response to neoadjuvant treatment: FDG PET/CT criteria according to breast cancer subtype. Radiology 277:358–371

    Article  PubMed  Google Scholar 

  82. Lee SM, Bae SK, Kim TH et al (2014) Value of 18F-FDG PET/CT for early prediction of pathologic response (by residual cancer burden criteria) of locally advanced breast cancer to neoadjuvant chemotherapy. Clin Nucl Med 39:882–886

    Article  PubMed  Google Scholar 

  83. Andrade WP, Lima EN, Osorio CA et al (2013) Can FDG-PET/CT predict early response to neoadjuvant chemotherapy in breast cancer? Eur J Surg Oncol 39:1358–1363

    Article  CAS  PubMed  Google Scholar 

  84. Luo J, Zhou Z, Yang Z et al (2016) The value of 18F-FDG PET/CT imaging combined with pretherapeutic Ki67 for early prediction of pathologic response after neoadjuvant chemotherapy in locally advanced breast cancer. Medicine 95:e2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Champion L, Lerebours F, Alberini JL et al (2015) 18F-FDG PET/CT to predict response to neoadjuvant chemotherapy and prognosis in inflammatory breast cancer. J Nucl Med 56:1315–1321

    Article  CAS  PubMed  Google Scholar 

  86. Dong Y, Hou H, Wang C et al (2015) The diagnostic value of 18F-FDG PET/CT in association with serum tumor marker assays in breast cancer recurrence and metastasis. Biomed Res Int 2015:489021

    PubMed  PubMed Central  Google Scholar 

  87. Schmidt GP, Baur-Melnyk A, Haug A et al (2008) Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol 65:47–58

    Article  PubMed  Google Scholar 

  88. Sawicki LM, Grueneisen J, Schaarschmidt BM et al (2016) Evaluation of 18F-FDG PET/MRI, 18F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol 85:459–465

    Article  PubMed  Google Scholar 

  89. Xiao Y, Wang L, Jiang X, She W, He L, Hu G (2016) Diagnostic efficacy of 18F-FDG-PET or PET/CT in breast cancer with suspected recurrence: a systematic review and meta-analysis. Nucl Med Commun 37:1180–1188

    Article  PubMed  Google Scholar 

  90. Chang HT, Hu C, Chiu YL, Peng NJ, Liu RS (2014) Role of 2-[18F] fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in the post-therapy surveillance of breast cancer. PLoS One 9:e115127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Champion L, Brain E, Giraudet AL et al (2011) Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient management. Cancer 117:1621–1629

    Article  PubMed  Google Scholar 

  92. Cochet A, David S, Moodie K et al (2014) The utility of 18F-FDG PET/CT for suspected recurrent breast cancer: impact and prognostic stratification. Cancer Imaging 14:13

    PubMed  PubMed Central  Google Scholar 

  93. Evangelista L, Baretta Z, Vinante L et al (2012) Comparison of 18F-FDG positron emission tomography/computed tomography and computed tomography in patients with already-treated breast cancer: diagnostic and prognostic implications. Q J Nucl Med Mol Imaging 56:375–384

    CAS  PubMed  Google Scholar 

  94. Manohar K, Mittal BR, Senthil R, Kashyap R, Bhattacharya A, Singh G (2012) Clinical utility of F-18 FDG PET/CT in recurrent breast carcinoma. Nucl Med Commun 33:591–596

    Article  PubMed  Google Scholar 

  95. Vranjesevic D, Filmont JE, Meta J et al (2002) Whole-body 18F-FDG PET and conventional imaging for predicting outcome in previously treated breast cancer patients. J Nucl Med 43:325–329

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paydary, K., Seraj, S.M., Zadeh, M.Z. et al. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer. Mol Imaging Biol 21, 1–10 (2019). https://doi.org/10.1007/s11307-018-1181-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1181-3

Key words

Navigation