Skip to main content

Advertisement

Log in

Prostate Cancer Theranostics Targeting Gastrin-Releasing Peptide Receptors

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Gastrin-releasing peptide receptors (GRPRs), part of the bombesin (BBN) family, are aberrantly overexpressed in many cancers, including those of the breast, prostate, pancreas, and lung, and therefore present an attractive target for cancer diagnosis and therapy. Different bombesin analogs have been radiolabeled and used for imaging diagnosis, staging, evaluation of biochemical recurrence, and assessment of metastatic disease in patients with prostate cancer. Recently, interest has shifted from BBN-like receptor agonists to antagonists, because the latter does not induce adverse effects and demonstrate superior in vivo pharmacokinetics. We review the preclinical and clinical literatures on the use of GRPRs as targets for imaging and therapy of prostate cancer, with a focus on the newer developments and theranostic potential of GRPR peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, Drake CG, de Bono JS (2016) Prostate cancer. Lancet 387(10013):70–82. https://doi.org/10.1016/S0140-6736(14)61947-4

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  3. Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC (2003) Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol 169(2):517–523. https://doi.org/10.1016/S0022-5347(05)63946-8

    Article  PubMed  Google Scholar 

  4. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N, European Association of Urology (2014) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 65(1):124–137. https://doi.org/10.1016/j.eururo.2013.09.046

    Article  PubMed  Google Scholar 

  5. Hovels AM, Heesakkers RA, Adang EM et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63(4):387–395. https://doi.org/10.1016/j.crad.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  6. Jensen RT, Battey JF, Spindel ER, Benya RV (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60(1):1–42. https://doi.org/10.1124/pr.107.07108

    Article  PubMed  CAS  Google Scholar 

  7. Mansi R, Fleischmann A, Macke HR, Reubi JC (2013) Targeting GRPR in urological cancers—from basic research to clinical application. Nat Rev Urol 10(4):235–244. https://doi.org/10.1038/nrurol.2013.42

    Article  PubMed  CAS  Google Scholar 

  8. Smith CJ, Volkert WA, Hoffman TJ (2003) Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 30(8):861–868. https://doi.org/10.1016/S0969-8051(03)00116-1

    Article  PubMed  CAS  Google Scholar 

  9. Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32(7):733–740. https://doi.org/10.1016/j.nucmedbio.2005.05.005

    Article  PubMed  CAS  Google Scholar 

  10. Ferreira CA, Fuscaldi LL, Townsend DM, Rubello D, Barros ALB (2017) Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 87:58–72. https://doi.org/10.1016/j.biopha.2016.12.083

    Article  PubMed  CAS  Google Scholar 

  11. Lee LF, Guan J, Qiu Y, Kung HJ (2001) Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 21(24):8385–8397. https://doi.org/10.1128/MCB.21.24.8385-8397.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ischia J, Patel O, Bolton D, Shulkes A, Baldwin GS (2014) Expression and function of gastrin-releasing peptide (GRP) in normal and cancerous urological tissues. BJU Int 113(Suppl 2):40–47. https://doi.org/10.1111/bju.12594

    Article  PubMed  CAS  Google Scholar 

  13. Desai SJ, Ma AH, Tepper CG, Chen HW, Kung HJ (2006) Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Res 66(21):10449–10459. https://doi.org/10.1158/0008-5472.CAN-06-2582

    Article  PubMed  CAS  Google Scholar 

  14. Patel O, Dumesny C, Shulkes A, Baldwin GS (2007) C-terminal fragments of the gastrin-releasing peptide precursor stimulate cell proliferation via a novel receptor. Endocrinology 148(3):1330–1339. https://doi.org/10.1210/en.2006-0466

    Article  PubMed  CAS  Google Scholar 

  15. Shimoda J (1992) Effects of bombesin and its antibody on growth of human prostatic carcinoma cell lines. Nihon Hinyokika Gakkai Zasshi 83(9):1459–1468

    PubMed  CAS  Google Scholar 

  16. Bologna M, Festuccia C, Muzi P, Biordi L, Ciomei M (1989) Bombesin stimulates growth of human prostatic cancer cells in vitro. Cancer 63(9):1714–1720

    Article  PubMed  CAS  Google Scholar 

  17. Hoosein NM, Logothetis CJ, Chung LW (1993) Differential effects of peptide hormones bombesin, vasoactive intestinal polypeptide and somatostatin analog RC-160 on the invasive capacity of human prostatic carcinoma cells. J Urol 149(5):1209–1213. https://doi.org/10.1016/S0022-5347(17)36349-8

    Article  PubMed  CAS  Google Scholar 

  18. Aprikian AG, Tremblay L, Han K, Chevalier S (1997) Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. Int J Cancer 72(3):498–504. https://doi.org/10.1002/(SICI)1097-0215(19970729)72:3<498::AID-IJC19>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  19. Sun B, Halmos G, Schally AV, Wang X, Martinez M (2000) Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate 42(4):295–303. https://doi.org/10.1002/(SICI)1097-0045(20000301)42:4<295::AID-PROS7>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  20. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59(5):1152–1159

    PubMed  CAS  Google Scholar 

  21. Weber HC (2009) Regulation and signaling of human bombesin receptors and their biological effects. Curr Opin Endocrinol Diabetes Obes 16(1):66–71. https://doi.org/10.1097/MED.0b013e32831cf5aa

    Article  PubMed  CAS  Google Scholar 

  22. Bartholdi MF, Wu JM, Pu H, Troncoso P, Eden PA, Feldman RI (1998) In situ hybridization for gastrin-releasing peptide receptor (GRP receptor) expression in prostatic carcinoma. Int J Cancer 79(1):82–90. https://doi.org/10.1002/(SICI)1097-0215(19980220)79:1<82::AID-IJC16>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  23. Nagasaki S, Nakamura Y, Maekawa T et al (2012) Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor betacx in human prostate carcinoma. Neoplasma 59(02):224–232. https://doi.org/10.4149/neo_2012_029

    Article  PubMed  CAS  Google Scholar 

  24. Beer M, Montani M, Gerhardt J, Wild PJ, Hany TF, Hermanns T, Müntener M, Kristiansen G (2012) Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate 72(3):318–325. https://doi.org/10.1002/pros.21434

    Article  PubMed  CAS  Google Scholar 

  25. Fleischmann A, Waser B, Reubi JC (2009) High expression of gastrin-releasing peptide receptors in the vascular bed of urinary tract cancers: promising candidates for vascular targeting applications. Endocr Relat Cancer 16(2):623–633. https://doi.org/10.1677/ERC-08-0316

    Article  PubMed  CAS  Google Scholar 

  26. Ananias HJ, van den Heuvel MC, Helfrich W, de Jong IJ (2009) Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate 69(10):1101–1108. https://doi.org/10.1002/pros.20957

    Article  PubMed  Google Scholar 

  27. Constantinides C, Lazaris AC, Haritopoulos KN, Pantazopoulos D, Chrisofos M, Giannopoulos A (2003) Immunohistochemical detection of gastrin releasing peptide in patients with prostate cancer. World J Urol 21(3):183–187. https://doi.org/10.1007/s00345-003-0339-y

    Article  PubMed  CAS  Google Scholar 

  28. Dijkgraaf I, Franssen GM, McBride WJ, D'Souza CA, Laverman P, Smith CJ, Goldenberg DM, Oyen WJG, Boerman OC (2012) PET of tumors expressing gastrin-releasing peptide receptor with an 18F-labeled bombesin analog. J Nucl Med 53(6):947–952. https://doi.org/10.2967/jnumed.111.100891

    Article  PubMed  CAS  Google Scholar 

  29. Zhang H, Chen J, Waldherr C, Hinni K, Waser B, Reubi JC, Maecke HR (2004) Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64(18):6707–6715. https://doi.org/10.1158/0008-5472.CAN-03-3845

    Article  PubMed  CAS  Google Scholar 

  30. Garcia Garayoa E, Schweinsberg C, Maes V et al (2007) New [99mTc]bombesin analogues with improved biodistribution for targeting gastrin releasing-peptide receptor-positive tumors. Q J Nucl Med Mol Imaging 51(1):42–50

    PubMed  CAS  Google Scholar 

  31. Abiraj K, Mansi R, Tamma ML, Fani M, Forrer F, Nicolas G, Cescato R, Reubi JC, Maecke HR (2011) Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors. J Nucl Med 52(12):1970–1978. https://doi.org/10.2967/jnumed.111.094375

    Article  PubMed  CAS  Google Scholar 

  32. Dapp S, Garcia Garayoa E, Maes V et al (2011) PEGylation of (99m)Tc-labeled bombesin analogues improves their pharmacokinetic properties. Nucl Med Biol 38(7):997–1009. https://doi.org/10.1016/j.nucmedbio.2011.02.014

    Article  PubMed  CAS  Google Scholar 

  33. Chatalic KL, Franssen GM, van Weerden WM et al (2014) Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med 55(12):2050–2056. https://doi.org/10.2967/jnumed.114.141143

    Article  PubMed  CAS  Google Scholar 

  34. Biddlecombe GB, Rogers BE, de Visser M, Parry JJ, de Jong M, Erion JL, Lewis JS (2007) Molecular imaging of gastrin-releasing peptide receptor-positive tumors in mice using 64Cu- and 86Y–DOTA-(Pro1,Tyr4)-bombesin(1–14). Bioconjug Chem 18(3):724–730. https://doi.org/10.1021/bc060281l

    Article  PubMed  CAS  Google Scholar 

  35. Dapp S, Muller C, Garayoa EG et al (2012) PEGylation, increasing specific activity and multiple dosing as strategies to improve the risk-benefit profile of targeted radionuclide therapy with 177Lu-DOTA-bombesin analogues. EJNMMI Res 2(1):24. https://doi.org/10.1186/2191-219X-2-24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wild D, Frischknecht M, Zhang H, Morgenstern A, Bruchertseifer F, Boisclair J, Provencher-Bolliger A, Reubi JC, Maecke HR (2011) Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res 71(3):1009–1018. https://doi.org/10.1158/0008-5472.CAN-10-1186

    Article  PubMed  CAS  Google Scholar 

  37. Maina T, Nock B, Mather S (2006) Targeting prostate cancer with radiolabelled bombesins. Cancer Imaging 6(1):153–157. https://doi.org/10.1102/1470-7330.2006.0025

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu Z, Ananias HJ, Carlucci G et al (2013) An update of radiolabeled bombesin analogs for gastrin-releasing peptide receptor targeting. Curr Pharm Des 19(18):3329–3341. https://doi.org/10.2174/1381612811319180015

    Article  PubMed  CAS  Google Scholar 

  39. Maddalena ME, Fox J, Chen J, Feng W, Cagnolini A, Linder KE, Tweedle MF, Nunn AD, Lantry LE (2009) 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med 50(12):2017–2024. https://doi.org/10.2967/jnumed.109.064444

    Article  PubMed  Google Scholar 

  40. Nock BA, Nikolopoulou A, Galanis A, Cordopatis P, Waser B, Reubi JC, Maina T (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48(1):100–110. https://doi.org/10.1021/jm049437y

    Article  PubMed  CAS  Google Scholar 

  41. Zhang H, Schuhmacher J, Waser B, Wild D, Eisenhut M, Reubi JC, Maecke HR (2007) DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging 34(8):1198–1208. https://doi.org/10.1007/s00259-006-0347-4

    Article  PubMed  Google Scholar 

  42. Baum R, Prasad V, Mutloka N, Frischknecht M, Maecke H, Reubi J (2007) Molecular imaging of bombesin receptors in various tumors by Ga-68 AMBA PET/CT: first results. J Nucl Med 48:79P

    Google Scholar 

  43. Mansi R, Wang X, Forrer F, Kneifel S, Tamma ML, Waser B, Cescato R, Reubi JC, Maecke HR (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15(16):5240–5249. https://doi.org/10.1158/1078-0432.CCR-08-3145

    Article  PubMed  CAS  Google Scholar 

  44. Carlucci G, Kuipers A, Ananias HJ et al (2015) GRPR-selective PET imaging of prostate cancer using [(18)F]-lanthionine-bombesin analogs. Peptides 67:45–54. https://doi.org/10.1016/j.peptides.2015.03.004

    Article  PubMed  CAS  Google Scholar 

  45. Lane SR, Nanda P, Rold TL, Sieckman GL, Figueroa SD, Hoffman TJ, Jurisson SS, Smith CJ (2010) Optimization, biological evaluation and microPET imaging of copper-64-labeled bombesin agonists, [64Cu-NO2A-(X)-BBN(7-14)NH2], in a prostate tumor xenografted mouse model. Nucl Med Biol 37(7):751–761. https://doi.org/10.1016/j.nucmedbio.2010.04.016

    Article  PubMed  CAS  Google Scholar 

  46. Shokeen M, Anderson CJ (2009) Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res 42(7):832–841. https://doi.org/10.1021/ar800255q

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Volkert WA, Jurisson SS, Hoffman TJ (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48(8):1327–1337. https://doi.org/10.2967/jnumed.107.039487

    Article  PubMed  CAS  Google Scholar 

  48. Van de Wiele C, Dumont F, Vanden Broecke R, Oosterlinck W, Cocquyt V, Serreyn R, Peers S, Thornback J, Slegers G, Dierckx RA (2000) Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 27(11):1694–1699. https://doi.org/10.1007/s002590000355

    Article  PubMed  Google Scholar 

  49. Scopinaro F, De Vincentis G, Varvarigou AD, Laurenti C, Iori F, Remediani S, Chiarini S, Stella S (2003) 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol Imaging 30(10):1378–1382. https://doi.org/10.1007/s00259-003-1261-7

    Article  PubMed  Google Scholar 

  50. Maina TNB, Kulkarni H, Singh A, Baum RP (2017) Theranostic prospects of gastrin-releasing peptide receptor-radioantagonists in oncology. PET Clin 12(3):297–309. https://doi.org/10.1016/j.cpet.2017.02.007

    Article  PubMed  Google Scholar 

  51. Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Macke HR, Reubi JC (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103(44):16436–16441. https://doi.org/10.1073/pnas.0607761103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sonni I, Baratto L, Iagaru A (2017) Imaging of prostate cancer using gallium-68-labeled bombesin. PET Clin 12(2):159–171. https://doi.org/10.1016/j.cpet.2016.11.003

    Article  PubMed  Google Scholar 

  53. Mansi R, Wang X, Forrer F, Waser B, Cescato R, Graham K, Borkowski S, Reubi JC, Maecke HR (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 38(1):97–107. https://doi.org/10.1007/s00259-010-1596-9

    Article  PubMed  CAS  Google Scholar 

  54. Gourni E, Mansi R, Jamous M, Waser B, Smerling C, Burian A, Buchegger F, Reubi JC, Maecke HR (2014) N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging. J Nucl Med 55(10):1719–1725. https://doi.org/10.2967/jnumed.114.141242

    Article  PubMed  CAS  Google Scholar 

  55. Dalm SU, Bakker IL, de Blois E, Doeswijk GN, Konijnenberg MW, Orlandi F, Barbato D, Tedesco M, Maina T, Nock BA, de Jong M (2017) 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med 58(2):293–299. https://doi.org/10.2967/jnumed.116.176636

    Article  PubMed  CAS  Google Scholar 

  56. Nock BA, Kaloudi A, Lymperis E, Giarika A, Kulkarni HR, Klette I, Singh A, Krenning EP, de Jong M, Maina T, Baum RP (2017) Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J Nucl Med 58(1):75–80. https://doi.org/10.2967/jnumed.116.178889

    Article  PubMed  CAS  Google Scholar 

  57. Yang M, Gao H, Zhou Y, Ma Y, Quan Q, Lang L, Chen K, Niu G, Yan Y, Chen X (2011) F-labeled GRPR agonists and antagonists: a comparative study in prostate cancer imaging. Theranostics 1:220–229. https://doi.org/10.7150/thno/v01p0220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pan D, Yan Y, Yang R, Xu YP, Chen F, Wang L, Luo S, Yang M (2014) PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN. Contrast Media Mol Imaging 9(5):342–348. https://doi.org/10.1002/cmmi.1583

    Article  PubMed  CAS  Google Scholar 

  59. Pan D, Xu YP, Yang RH et al (2014) A new (68)Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging. Amino Acids 46(6):1481–1489. https://doi.org/10.1007/s00726-014-1718-y

    Article  PubMed  CAS  Google Scholar 

  60. Gourni E, Del Pozzo L, Kheirallah E, Smerling C, Waser B, Reubi JC, Paterson BM, Donnelly PS, Meyer PT, Maecke HR (2015) Copper-64 labeled macrobicyclic sarcophagine coupled to a GRP receptor antagonist shows great promise for PET imaging of prostate cancer. Mol Pharm 12(8):2781–2790. https://doi.org/10.1021/mp500671j

    Article  PubMed  CAS  Google Scholar 

  61. Roivainen A, Kahkonen E, Luoto P, Borkowski S, Hofmann B, Jambor I, Lehtio K, Rantala T, Rottmann A, Sipila H, Sparks R, Suilamo S, Tolvanen T, Valencia R, Minn H (2013) Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med 54(6):867–872. https://doi.org/10.2967/jnumed.112.114082

    Article  PubMed  CAS  Google Scholar 

  62. Kahkonen E, Jambor I, Kemppainen J, Lehtio K, Gronroos TJ, Kuisma A, Luoto P, Sipila HJ, Tolvanen T, Alanen K, Silen J, Kallajoki M, Roivainen A, Schafer N, Schibli R, Dragic M, Johayem A, Valencia R, Borkowski S, Minn H (2013) In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 19(19):5434–5443. https://doi.org/10.1158/1078-0432.CCR-12-3490

    Article  PubMed  CAS  Google Scholar 

  63. Zhang J, Niu G, Lang L, Li F, Fan X, Yan X, Yao S, Yan W, Huo L, Chen L, Li Z, Zhu Z, Chen X (2017) Clinical translation of a dual integrin alphavbeta3- and gastrin-releasing peptide receptor-targeting PET radiotracer, 68Ga-BBN-RGD. J Nucl Med 58(2):228–234. https://doi.org/10.2967/jnumed.116.177048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Li ZB, Wu Z, Chen K, Ryu EK, Chen X (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49(3):453–461. https://doi.org/10.2967/jnumed.107.048009

    Article  PubMed  CAS  Google Scholar 

  65. Iagaru AH (2017) Dual integrin αvβ3- and gastrin-releasing peptide receptor-targeting PET radiotracer (68Ga-BBN-RGD). J Nucl Med

  66. Wieser G, Mansi R, Grosu AL, Schultze-Seemann W, Dumont-Walter RA, Meyer PT, Maecke HR, Reubi JC, Weber WA (2014) Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist—from mice to men. Theranostics 4(4):412–419. https://doi.org/10.7150/thno.7324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ananias HJ, Yu Z, Hoving HD et al (2013) Application of (99m)Technetium-HYNIC(tricine/TPPTS)-Aca-Bombesin(7-14) SPECT/CT in prostate cancer patients: a first-in-man study. Nucl Med Biol 40:933–938

  68. Mather SJ, Nock BA, Maina T et al (2014) GRP receptor imaging of prostate cancer using [(99m)Tc]Demobesin 4: a first-in-man study. Mol Imaging Biol 16:888–895

  69. Wieser G, Popp I, Christian Rischke H et al (2017) Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist 68Ga-RM2: Preliminary results in patients with negative or inconclusive [18F]Fluoroethylcholine-PET/CT. Eur J Nucl Med Mol Imaging 44:1463–1472

  70. Minamimoto R, Hancock S, Schneider B et al (2016) Pilot Comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. J Nucl Med 57:557–562

  71. Maina T, Bergsma H, Kulkarni HR et al (2016) Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [(6)(8)Ga]SB3 and PET/CT. Eur J Nucl Med Mol Imaging 43:964–973

  72. Minamimoto R, Sonni I, Hancock S et al (2017) Prospective evaluation of 68Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative conventional imaging. J Nucl Med. https://doi.org/10.2967/jnumed.117.197624

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Jadvar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baratto, L., Jadvar, H. & Iagaru, A. Prostate Cancer Theranostics Targeting Gastrin-Releasing Peptide Receptors. Mol Imaging Biol 20, 501–509 (2018). https://doi.org/10.1007/s11307-017-1151-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1151-1

Key words

Navigation