Skip to main content

Advertisement

Log in

Correction for Partial Volume Effect Is a Must, Not a Luxury, to Fully Exploit the Potential of Quantitative PET Imaging in Clinical Oncology

  • Commentary
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The partial volume effect (PVE) is considered as one of the major degrading factors impacting image quality and hampering the accuracy of quantitative PET imaging in clinical oncology. This effect is the consequence of the limited spatial resolution of whole-body PET scanners, which results in blurring of the generated images by the scanner’s response function. A number of strategies have been devised to deal with partial volume effect. However, the lack of consensus on the clinical relevance of partial volume correction and the most appropriate technique to be used in the context of clinical oncology limited their application in clinical setting. This issue is debated in this commentary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rousset O, Rahmim A, Alavi A, Zaidi H (2007) Partial volume correction strategies in PET. PET Clin 2(2):235–249. https://doi.org/10.1016/j.cpet.2007.10.005

    Article  PubMed  Google Scholar 

  2. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48(6):932–945. https://doi.org/10.2967/jnumed.106.035774

    Article  PubMed  Google Scholar 

  3. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF (2012) A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 57(21):R119–RR59. https://doi.org/10.1088/0031-9155/57/21/R119

    Article  PubMed  Google Scholar 

  4. Cysouw MCF, Kramer GM, Schoonmade LJ, Boellaard R, de Vet HCW, Hoekstra OS (2017) Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 44(12):2105–2116. https://doi.org/10.1007/s00259-017-3775-4

  5. Flather MD, Farkouh ME, Pogue JM, Yusuf S (1997) Strengths and limitations of meta-analysis: larger studies may be more reliable. Control Clin Trials 18(6):568–579; discussion 661-66. https://doi.org/10.1016/S0197-2456(97)00024-X

    Article  CAS  PubMed  Google Scholar 

  6. Greco T, Zangrillo A, Biondi-Zoccai G, Landoni G (2013) Meta-analysis: pitfalls and hints. Heart Lung Vessel 5:219–225

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cysouw MC, Kramer GM, Hoekstra OS, Frings V, de Langen AJ, Smit EF et al (2016) Accuracy and precision of partial volume correction in oncological PET/CT studies. J Nucl Med 57(10):1642–1649. https://doi.org/10.2967/jnumed.116.173831

    Article  PubMed  Google Scholar 

  8. Roehm E (2005) Limitations of meta-analyses. http://www.improvingmedicalstatistics.com/Limitations%20of%20Meta-analysis1.htm. 09/06/2017

  9. Chawluk JB, Alavi A, Dann R, Hurtig HI, Bais S, Kushner MJ, Zimmerman RA, Reivich M (1987) Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 28(4):431–437

    CAS  PubMed  Google Scholar 

  10. Tanna NK, Kohn MI, Horwich DN, Jolles PR, Zimmerman RA, Alves WM, Alavi A (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging: impact on PET data correction for atrophy. Part II. aging and Alzheimer dementia. Radiology 178(1):123–130. https://doi.org/10.1148/radiology.178.1.1984290

    Article  CAS  PubMed  Google Scholar 

  11. Hoilund-Carlsen PF, Lauritzen SL, Marving J, Rasmussen S, Hesse B, Folke K, Godtfredsen J, Chraemmer-Jorgensen B, Gadsboll N, Dige-Petersen H (1988) The reliability of measuring left ventricular ejection fraction by radionuclide cardiography: evaluation by the method of variance components. Br Heart J 59(6):653–662. https://doi.org/10.1136/hrt.59.6.653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bar-Shalom R, Valdivia AY, Blaufox MD (2000) PET imaging in oncology. Semin Nucl Med 30(3):150–185. https://doi.org/10.1053/snuc.2000.7439

    Article  CAS  PubMed  Google Scholar 

  13. Duhaylongsod FG, Lowe VJ, Patz EF Jr, Vaughn AL, Coleman RE, Wolfe WG (1995) Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg 110(1):130–139; discussion 39–40. https://doi.org/10.1016/S0022-5223(05)80018-2

    Article  CAS  PubMed  Google Scholar 

  14. Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE, Goodman PC (1993) Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 188(2):487–490. https://doi.org/10.1148/radiology.188.2.8327702

    Article  PubMed  Google Scholar 

  15. Prauer HW, Weber WA, Romer W, Treumann T, Ziegler SI, Schwaiger M (1998) Controlled prospective study of positron emission tomography using the glucose analogue [18f] fluorodeoxyglucose in the evaluation of pulmonary nodules. Br J Surg 85(11):1506–1511. https://doi.org/10.1046/j.1365-2168.1998.00915.x

    Article  CAS  PubMed  Google Scholar 

  16. Hickeson M, Yun M, Matthies A, Zhuang H, Adam LE, Lacorte L, Alavi A (2002) Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging 29(12):1639–1647. https://doi.org/10.1007/s00259-002-0924-0

    Article  PubMed  Google Scholar 

  17. Kwee TC, Cheng G, Lam MG, Basu S, Alavi A (2013) SUVmax of 2.5 should not be embraced as a magic threshold for separating benign from malignant lesions. Eur J Nucl Med Mol Imaging 40:1475–1477

    Article  PubMed  Google Scholar 

  18. Salavati A, Borofsky S, Boon-Keng TK, Houshmand S, Khiewvan B, Saboury B, Codreanu I, Torigian DA, Zaidi H, Alavi A (2015) Application of partial volume effect correction and 4D PET in the quantification of FDG avid lung lesions. Mol Imaging Biol 17(1):140–148. https://doi.org/10.1007/s11307-014-0776-6

    Article  PubMed  Google Scholar 

  19. Teo BK, Saboury B, Munbodh R, Scheuermann J, Torigian DA, Zaidi H, Alavi A (2012) The effect of breathing irregularities on quantitative accuracy of respiratory gated PETCT. Med Phys 39(12):7390–7397. https://doi.org/10.1118/1.4766876

    Article  PubMed  Google Scholar 

  20. Alavi A, Newberg AB, Souder E, Berlin JA (1993) Quantitative analysis of PET and MRI data in normal aging and Alzheimer’s disease: atrophy weighted total brain metabolism and absolute whole brain metabolism as reliable discriminators. J Nucl Med 34(10):1681–1687

    CAS  PubMed  Google Scholar 

  21. Berkowitz A, Basu S, Srinivas S, Sankaran S, Schuster S, Alavi A (2008) Determination of whole-body metabolic burden as a quantitative measure of disease activity in lymphoma: a novel approach with fluorodeoxyglucose-PET. Nucl Med Commun 29(6):521–526. https://doi.org/10.1097/MNM.0b013e3282f813a4

    Article  CAS  PubMed  Google Scholar 

  22. Basu S, Zaidi H, Salavati A, Hess S, Carlsen PF, Alavi A (2014) FDG PET/CT methodology for evaluation of treatment response in lymphoma: from “graded visual analysis” and “semiquantitative SUVmax” to global disease burden assessment. Eur J Nucl Med Mol Imaging 41(11):2158–2160. https://doi.org/10.1007/s00259-014-2826-3

    Article  PubMed  Google Scholar 

  23. Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H (2015) An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin 10(1):45–58. https://doi.org/10.1016/j.cpet.2014.09.004

    Article  PubMed  Google Scholar 

  24. Torigian DA, Lopez RF, Alapati S, Bodapati G, Hofheinz F, van den Hoff J, Saboury B, Alavi A (2011) Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med 14(1):8–14

    PubMed  Google Scholar 

  25. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383(9918):705–713. https://doi.org/10.1016/S0140-6736(13)61754-7

    Article  PubMed  Google Scholar 

  26. Dweck MR, Aikawa E, Newby DE, Tarkin JM, Rudd JH, Narula J et al (2016) Noninvasive molecular imaging of disease activity in atherosclerosis. Circ Res 119(2):330–340. https://doi.org/10.1161/CIRCRESAHA.116.307971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, A., Werner, T.J., Høilund-Carlsen, P.F. et al. Correction for Partial Volume Effect Is a Must, Not a Luxury, to Fully Exploit the Potential of Quantitative PET Imaging in Clinical Oncology. Mol Imaging Biol 20, 1–3 (2018). https://doi.org/10.1007/s11307-017-1146-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1146-y

Key words

Navigation