Skip to main content
Log in

Targeting Prostate-Specific Membrane Antigen (PSMA) with F-18-Labeled Compounds: the Influence of Prosthetic Groups on Tumor Uptake and Clearance Profile

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in the majority of prostate cancers. The favorable positron emission tomography (PET) imaging profile of the PSMA imaging agent 2-(3-(1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentane-dioic acid [18F]DCFPyL in preclinical prostate cancer models and in prostate cancer patients stimulated the development and validation of other fluorine-containing PSMA inhibitors to further enhance pharmacokinetics and simplify production methods. Here, we describe the synthesis and radiopharmacological evaluation of various F-18-labeled PSMA inhibitors which were prepared through different prosthetic group chemistry strategies.

Procedures

Prosthetic groups N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), 4-[18F]fluorobenzaldehyde, and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) were used for bioconjugation reactions to PSMA-binding lysine-urea-glutamate scaffold via acylation and oxime formation. All fluorine-containing PSMA inhibitors were tested for their PSMA inhibitory potency in an in vitro competitive binding assay in comparison to an established reference compound [125I]TAAG-PSMA. Tumor uptake and clearance profiles of three F-18-labeled PSMA inhibitors ([18F]4, [18F]7, and [18F]8) were studied with dynamic PET imaging using LNCaP tumor-bearing mice.

Results

F-18-labeled PSMA inhibitors were synthesized in 32–69 % radiochemical yields using (1) acylation reaction at the primary amino group of the lysine residue with [18F]SFB and (2) oxime formation with 4-[18F]fluorobenzaldehyde and [18F]FDG using the respective aminooxy-functionalized lysine residue. Compound 7 displayed an IC50 value of 6 nM reflecting very high affinity for PSMA. Compounds 4 and 8 showed IC50 values of 13 and 62 nM, respectively. The IC50 value of reference compound DCFPyL was 13 nM. Dynamic PET imaging revealed the following SUV60min for radiotracer uptake in PSMA(+) LNCaP tumors: 0.98 ([18F]DCFPyL), 2.11 ([18F]7), 0.40 ([18F]4), and 0.19 ([18F]8).

Conclusion

The observed tumor uptake and clearance profiles demonstrate the importance of the selected prosthetic group on the pharmacokinetic profile of analyzed PSMA-targeting radiotracers. Radiotracer [18F]7 displayed the highest uptake and retention in LNCaP tumors, which exceeded uptake values of reference compound [18F]DCFPyL by more than 100 %. Despite the higher kidney and liver uptake and retention of compound [18F]7, the simple radiosynthesis and the exceptionally high tumor uptake (SUV60min 2.11) and retention make radiotracer [18F]7 an interesting alternative to radiotracer [18F]DCFPyL for PET imaging of PSMA in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  2. Resnick MJ, Koyama T, Fan KH et al (2013) Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med 368:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weber J, Haberkorn U, Mier W (2015) Cancer stratification by molecular imaging. Int J Mol Sci 16:4918–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bařinka C, Rojas C, Slusher B, Pomper M (2012) Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem 19:856–870

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mease RC, Foss CA, Pomper MG (2013) PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 13:951–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castanares MA, Mukherjee A, Chowdhury WH et al (2014) Evaluation of prostate-specific membrane antigen as an imaging reporter. J Nucl Med 55:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pillai MR, Nanabala R, Joy A et al (2016) Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol 43:692–720

    Article  CAS  PubMed  Google Scholar 

  8. Ganguly T, Dannoon S, Hopkins MR et al (2015) A high-affinity [18F]-labeled phosphoramidate peptidomimetic PSMA-targeted inhibitor for PET imaging of prostate cancer. Nucl Med Biol 42:780–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rowe SP, Drzezga A, Neumaier B et al (2016) Prostate-specific membrane antigen-targeted radiohalogenated PET and therapeutic agents for prostate cancer. J Nucl Med 57:90S–96S

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kratochwil C, Afshar-Oromieh A, Kopka K et al (2016) Current status of prostate-specific membrane antigen targeting in nuclear medicine: clinical translation of chelator containing prostate-specific membrane antigen ligands into diagnostics and therapy for prostate cancer. Semin Nucl Med 46:405–418

    Article  PubMed  Google Scholar 

  11. Hofman MS, Iravani A (2017) Gallium-68 prostate-specific membrane antigen. PET Clin 12:219–234

    Article  PubMed  Google Scholar 

  12. Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90

    Article  PubMed  Google Scholar 

  13. Dietlein M, Kobe C, Kuhnert G et al (2015) Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol 17:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouvet V, Wuest M, Jans HS et al (2016) Automated synthesis of [18F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  15. Szabo Z, Mena E, Rowe SP et al (2015) Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 17:565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rowe SP, Gage KL, Faraj SF et al (2015) 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med 56:1003–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Y, Pullambhatla M, Foss CA et al (2011) 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 17:7645–7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Foss CA, Byun Y et al (2008) Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer. J Med Chem 51:7933–7943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harada N, Kimura H, Onoe S et al (2016) Synthesis and biologic evaluation of novel 18F-labeled probes targeting prostate-specific membrane antigen for PET of prostate cancer. J Nucl Med 57:1978–1984

    Article  PubMed  Google Scholar 

  20. Malik N, Baur B, Winter G et al (2015) Radiofluorination of PSMA-HBED via Al18F (2+) chelation and biological evaluations in vitro. Mol Imaging Biol 17:777–785

    Article  CAS  PubMed  Google Scholar 

  21. Davis MI, Bennett MJ, Thomas LM, Bjorkman PJ (2005) Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci U S A 102:5981–5986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang X, Mease RC, Pullambhatla M et al (2016) [18F]Fluorobenzoyl-lysinepentanedioic acid carbamates: new scaffolds for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA). J Med Chem 59:206–218

    Article  CAS  PubMed  Google Scholar 

  23. Pomper M, Mease RS, Chen Y (2014) PSMA-binding agents and uses thereof. US 8778305:B2

    Google Scholar 

  24. Chen Y, Foss CA, Nimmagadda S et al (2008) Positron-emitting PSMA inhibitors for molecular imaging of prostate cancer. J Nucl Med 49(Suppl 1):98P

    Google Scholar 

  25. Sharma SK, Wuest M, Way JD et al (2016) Synthesis and pre-clinical evaluation of an 18F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer. Am J Nucl Med Mol Imaging 6:185–198

    PubMed  PubMed Central  Google Scholar 

  26. Speranza A, Ortosecco G, Castaldi E et al (2009) Fully automated synthesis procedure of 4-[18F]fluorobenzaldehyde by commercial synthesizer: amino-oxi peptide labelling prosthetic group. Appl Radiat Isot 67:1664–1669

    Article  CAS  PubMed  Google Scholar 

  27. Waterhouse RN (2003) Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 5:376–389

    Article  PubMed  Google Scholar 

  28. Darwish A, Blacker M, Janzen N et al (2012) Triazole appending agent (TAAG): a new synthon for preparing iodine-based molecular imaging and radiotherapy agents. ACS Med Chem Lett 3:313–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson PF, Cole DC, Slusher BS et al (1996) Design, synthesis, and biological activity of a potent inhibitor of theneuropeptidase N-acetylated alpha-linked acidic dipeptidase. J Med Chem 39:619–622

    Article  CAS  PubMed  Google Scholar 

  30. Haberkorn U, Eder M, Kopka K et al (2016) New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res 22:9–15

    Article  CAS  PubMed  Google Scholar 

  31. Rowe SP, Gorin MA, Fragomeni RAS et al (2017) Clinical experience with 18F-labeled small molecule inhibitors of prostate-specific membrane antigen. PET Clin 12:235–241

    Article  PubMed  Google Scholar 

  32. Richter S, Wuest F (2014) 18F-labeled peptides: the future is bright. Molecules 19:20536–20556

    Article  PubMed  Google Scholar 

  33. Liu S, Shen B, Chin FT, Cheng Z (2011) Recent progress in radiofluorination of peptides for PET molecular imaging. Curr Org Synth 8:584–592

    Article  CAS  Google Scholar 

  34. Kuhnast B, Dolle F (2010) The challenge of labeling macromolecules with fluorine-18: three decades of research. Curr Radiopharm 3:174–201

    Article  CAS  Google Scholar 

  35. Richter S, Wuest M, Bergman CN et al (2015) Rerouting the metabolic pathway of (18)F-labeled peptides: the influence of prosthetic groups. Bioconjug Chem 26:201–212

    Article  CAS  PubMed  Google Scholar 

  36. Wuest F, Hultsch C, Berndt M, Bergmann R (2009) Direct labeling of peptides with 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG). Bioorg Med Chem Lett 19:5426–5428

    Article  CAS  PubMed  Google Scholar 

  37. Namavari M, Cheng Z, Zhang R et al (2009) A novel method for direct site-specific radiolabeling of peptides using [18F]FDG. Bioconjug Chem 20:432–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelly J, Amor-Coarasa A, Nikolopoulou A et al (2017) Synthesis and pre-clinical evaluation of a new class of high-affinity 18F-labeled PSMA ligands for detection of prostate cancer by PET imaging. Eur J Nucl Med Mol Imaging 44:647–661

    Article  CAS  PubMed  Google Scholar 

  39. Benešová M, Schäfer M, Bauder-Wüst U et al (2015) Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med 56:914–920

    Article  PubMed  Google Scholar 

  40. Chatalic KL, Heskamp S, Konijnenberg M et al (2016) Towards personalized treatment of prostate cancer: PSMA I&T, a promising prostate-specific membrane antigen-targeted theranostic agent. Theranostics 6:849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank John Wilson, Dave Clendening, and Blake Lazurko from the Edmonton PET Centre for radionuclide production as well as Angela Westover and Jeff McPherson for providing [18F]FDG. The authors would like to thank Gail Hipperson and Dan McGinn from the Vivarium of the Cross Cancer Institute for supporting the animal work, as well as Dr. Hans-Soenke Jans from the Division of Medical Physics for the technical support of the animal imaging facility. We gratefully acknowledge the Dianne and Irving Kipnes Foundation, the Canadian Institute of Health Research (CIHR), The Ontario Institute for Cancer Research (OICR), and the National Science and Engineering Research Council of Canada (NSERC) with its Collaborative Research and Training Experience Program (CREATE – Molecular Imaging Probes) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wuest.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouvet, V., Wuest, M., Bailey, J.J. et al. Targeting Prostate-Specific Membrane Antigen (PSMA) with F-18-Labeled Compounds: the Influence of Prosthetic Groups on Tumor Uptake and Clearance Profile. Mol Imaging Biol 19, 923–932 (2017). https://doi.org/10.1007/s11307-017-1102-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1102-x

Key Words

Navigation