Skip to main content

Advertisement

Log in

Imaging of Tumor-Associated Macrophages in a Transgenic Mouse Model of Orthotopic Ovarian Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Tumor-associated macrophages (TAMs) are often associated with a poor prognosis in cancer. To gain a better understanding of cellular recruitment and dynamics of TAM biology during cancer progression, we established a novel transgenic mouse model for in vivo imaging of luciferase-expressing macrophages.

Procedures

B6.129P2-Lyz2tm1(cre)Ifo/J mice, which express Cre recombinase under the control of the lysozyme M promoter (LysM) were crossed to Cre-lox Luc reporter mice (RLG), to produce LysM-LG mice whose macrophages express luciferase. Cell-type-specific luciferase expression in these mice was verified by flow cytometry, and via in vivo bioluminescence imaging under conditions where macrophages were either stimulated with lipopolysaccharide or depleted with clodronate liposomes. The distribution of activated macrophages was longitudinally imaged in two immunocompetent LysM-LG mouse models with either B16 melanoma or ID8 ovarian cancer cells.

Results

In vivo imaging of LysM-LG mice showed luciferase activity was generated by macrophages. Clodronate liposome-mediated depletion of macrophages lowered overall bioluminescence while lipopolysaccharide injection increased macrophage bioluminescence in both the B16 and ID8 models. Tracking macrophages weekly in tumor-bearing animals after intraperitoneal (i.p.) or intraovarian (i.o.) injection resulted in distinct, dynamic patterns of macrophage activity. Animals with metastatic ovarian cancer after i.p. injection exhibited significantly higher peritoneal macrophage activity compared to animals after i.o. injection.

Conclusion

The LysM-LG model allows tracking of macrophage recruitment and activation during disease initiation and progression in a noninvasive manner. This model provides a tool to visualize and monitor the benefit of pharmacological interventions targeting macrophages in preclinical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23:277–286

    Article  CAS  PubMed  Google Scholar 

  3. Cook J, Hagemann T (2013) Tumour-associated macrophages and cancer. Curr Op Pharm 13:595–601

    Article  CAS  Google Scholar 

  4. Takaishi K, Komohara Y, Tashiro H et al (2010) Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci 101:2128–2136

    Article  CAS  PubMed  Google Scholar 

  5. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Solinas G, Marchesi F, Garlanda C et al (2010) Inflammation-mediated promotion of invasion and metastasis. Cancer Met Rev 29:243–248

    Article  CAS  Google Scholar 

  9. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  10. Zhang M, He Y, Sun X et al (2014) A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hagemann T, Wilson J, Burke F et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176:5023–5032

    Article  CAS  PubMed  Google Scholar 

  12. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daldrup-Link H, Coussens LM (2012) MR imaging of tumor-associated macrophages. Oncoimmunology 1:507–509

    Article  PubMed  PubMed Central  Google Scholar 

  14. Daldrup-Link HE, Golovko D, Ruffell B et al (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17:5695–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clausen BE, Burkhardt C, Reith W et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277

    Article  CAS  PubMed  Google Scholar 

  16. Cross M, Mangelsdorf I, Wedel A, Renkawitz R (1988) Mouse lysozyme M gene: isolation, characterization, and expression studies. Proc Natl Acad Sci U S A 85:6232–6236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanada M, Bachmann MH, Hardy JW et al (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci U S A 112:E1433–E1442

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez-Gonzalez E, Ra H, Hickerson RP et al (2009) siRNA silencing of keratinocyte-specific GFP expression in a transgenic mouse skin model. Gene Ther 16:963–972

    Article  CAS  PubMed  Google Scholar 

  19. Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edinger M, Sweeney TJ, Tucker AA et al (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chow A, Brown BD, Merad M (2011) Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 11:788–798

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    Article  CAS  PubMed  Google Scholar 

  23. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moughon DL, He H, Schokrpur S et al (2015) Macrophage blockade using CSF1R inhibitors reverses the vascular leakage underlying malignant ascites in late-stage epithelial ovarian cancer. Cancer Res 75:4742–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burnett SH, Kershen EJ, Zhang J et al (2004) Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 75:612–623

    Article  CAS  PubMed  Google Scholar 

  27. Evrard M, Chong SZ, Devi S et al (2015) Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L−/− reporter mouse by multiphoton intravital microscopy. J Leukoc Biol 97:611–619

    Article  CAS  PubMed  Google Scholar 

  28. Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8:533–544

    Article  CAS  PubMed  Google Scholar 

  30. Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Med 19:1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schreiber HA, Loschko J, Karssemeijer RA et al (2013) Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med 210:2025–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Long KB, Beatty GL (2013) Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology 2:e26860

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guiducci C, Vicari AP, Sangaletti S et al (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    Article  CAS  PubMed  Google Scholar 

  35. Ribas A, Wolchok JD (2013) Combining cancer immunotherapy and targeted therapy. Curr Op Immunol 25:291–296

    Article  CAS  Google Scholar 

  36. Garris C, Pittet MJ (2013) Therapeutically reeducating macrophages to treat GBM. Nature Med 19:1207–1208

    Article  CAS  PubMed  Google Scholar 

  37. Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Op Immunol 18:39–48

    Article  CAS  Google Scholar 

  38. Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163

    Article  CAS  PubMed  Google Scholar 

  39. Hume DA (2011) Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity. J Leukoc Biol 89:525–538

    Article  CAS  PubMed  Google Scholar 

  40. Fantin A, Vieira JM, Gestri G et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clarke S, Greaves DR, Chung LP et al (1996) The human lysozyme promoter directs reporter gene expression to activated myelomonocytic cells in transgenic mice. Proc Natl Acad Sci U S A 93:1434–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keshav S, Chung P, Milon G, Gordon S (1991) Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization. J Exp Med 174:1049–1058

    Article  CAS  PubMed  Google Scholar 

  43. Fenrich KK, Weber P, Rougon G, Debarbieux F (2013) Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury. J Physiol 591:4895–4902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mary Lake Polan Gynecologic Oncology Endowment for Research (O. D.), the Vivian Scott Fellowship in Gynecologic Oncology (O. D.), the Dean Pizzo Stanford Cancer Center Research Award (O. D.), the Child Health Research Institute at Stanford (C. C.), and a generous gift from the Chambers Family Foundation for Excellence in Pediatric Research (C.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Dorigo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Chiu, A.C., Kanada, M. et al. Imaging of Tumor-Associated Macrophages in a Transgenic Mouse Model of Orthotopic Ovarian Cancer. Mol Imaging Biol 19, 694–702 (2017). https://doi.org/10.1007/s11307-017-1061-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1061-2

Key words

Navigation