Skip to main content

Advertisement

Log in

Tc-99m Radiolabeled Peptide p5 + 14 is an Effective Probe for SPECT Imaging of Systemic Amyloidosis

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Systemic peripheral amyloidosis is a rare disease in which misfolded proteins deposit in various organs. We have previously developed I-124 labeled peptide p5 + 14 as a tracer for positron emission tomography imaging of amyloid in patients. In this report, we now document the labeling efficiency, bioactivity, and stability of Tc-99m labeled p5 + 14 for single-photon emission computed tomography (SPECT) imaging of amyloidosis, validated in a mouse model of systemic amyloidosis.

Procedures

Radiochemical yield, purity, and biological activity of [99mTc]p5 + 14 were documented by instant thin-layer chromatography (ITLC), SDS-PAGE and a quantitative amyloid fibril pulldown assay. The efficacy and stability were documented in serum amyloid protein A (AA) amyloid-bearing or wild-type (WT) control mice imaged with SPECT/X-ray computed tomography (CT) at two time points. The uptake and retention of [99mTc]p5 + 14 in hepatosplenic amyloid was evaluated using region of interest (ROI) and tissue counting measurements.

Results

Tc-99m p5 + 14 was produced with a radiochemical yield of 75 % with greater than 90 % purity and biological activity comparable to that of radioiodinated peptide. AA amyloid was visualized by SPECT/CT imaging with specific uptake seen in amyloid-laden organs at levels ∼5 folds higher than in healthy mice. ROI analyses of decay-corrected SPECT/CT images showed <20 % loss of radiolabel from the 1 to 4 h imaging time points. Biodistribution data confirmed the specificity of the probe accumulation by amyloid-laden organs as compared to non-diseased tissues.

Conclusion

[99mTc]p5 + 14 is a specific and stable radiotracer for systemic amyloid in mice and may provide a convenient and inexpensive alternative to imaging of peripheral amyloidosis in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

AA:

Serum amyloid protein A

SPECT/CT:

Single-photon emission computed/X-ray computed tomography

ARG:

Microautoradiography

References

  1. Merlini G, Wechalekar AD, Palladini G (2013) Systemic light chain amyloidosis: an update for treating physicians. Blood 121:5124–5130

    Article  CAS  PubMed  Google Scholar 

  2. Obici L, Merlini G (2012) AA amyloidosis: basic knowledge, unmet needs and future treatments. Swiss Med Wkly 142:w13580

    PubMed  Google Scholar 

  3. Pepys MB (2006) Amyloidosis. Ann Rev Med 57:223–241

    Article  CAS  PubMed  Google Scholar 

  4. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203

    Article  CAS  PubMed  Google Scholar 

  5. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006262

    Article  PubMed  PubMed Central  Google Scholar 

  6. Blancas-Mejia LM, Ramirez-Alvarado M (2013) Systemic amyloidoses. Annu Rev Biochem 82:745–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinney JH, Smith CJ, Taube JB et al (2013) Systemic amyloidosis in England: an epidemiological study. Br J Haematol 161:525–532

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hawkins PN (1994) Diagnosis and monitoring of amyloidosis. Baillieres Clin Rheumatol 8:635–659

    Article  CAS  PubMed  Google Scholar 

  9. Hazenberg BP, van Rijswijk MH, Piers DA et al (2006) Diagnostic performance of 123I-labeled serum amyloid P component scintigraphy in patients with amyloidosis. Am J Med 119(355):e315–324

    Google Scholar 

  10. Dorbala S, Vangala D, Semer J et al (2014) Imaging cardiac amyloidosis: a pilot study using (1)(8)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 41:1652–1662

    Article  CAS  PubMed  Google Scholar 

  11. Osborne D, Acuff S, Stuckey A, Wall J (2015) A routine PET/CT protocol with simple calculations for assessing cardiac amyloid using 18F-Florbetapir. Frontiers in Cardiovascular Medicine 2

  12. Wall JS, Richey T, Stuckey A et al (2011) In vivo molecular imaging of peripheral amyloidosis using heparin-binding peptides. Proc Natl Acad Sci U S A 108:E586–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wall JS, Williams A, Richey T et al (2013) A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo. PLoS ONE 8, e66181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wall JS, Martin EB, Richey T et al (2015) Preclinical validation of the heparin-reactive peptide p5 + 14 as a molecular imaging agent for visceral amyloidosis. Molecules 20:7657–7682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran T, Engfeldt T, Orlova A et al (2007) In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Bioconjug Chem 18:549–558

    Article  CAS  PubMed  Google Scholar 

  16. Li F, Cheng T, Dong Q et al (2015) Evaluation of (99m)Tc-HYNIC-TMTP1 as a tumor-homing imaging agent targeting metastasis with SPECT. Nucl Med Biol 42:256–262

    Article  CAS  PubMed  Google Scholar 

  17. Wall J, Schell M, Murphy C et al (1999) Thermodynamic instability of human lambda 6 light chains: correlation with fibrillogenicity. Biochem 38:14101–14108

    Article  CAS  Google Scholar 

  18. Solomon A, Weiss DT, Schell M et al (1999) Transgenic mouse model of AA amyloidosis. Am J Pathol 154:1267–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wall JS, Richey T, Allen A et al (2008) Quantitative tomography of early-onset spontaneous AA amyloidosis in interleukin 6 transgenic mice. Comp Med 58:542–550

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Magota K, Kubo N, Kuge Y et al (2011) Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging 38:742–752

    Article  PubMed  Google Scholar 

  21. Ogawa K (1994) Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann Nucl Med 8:277–281

    Article  PubMed  Google Scholar 

  22. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Optical Soc Am A 1:612–619

    Article  Google Scholar 

  23. Aprile C, Marinone G, Saponaro R et al (1995) Cardiac and pleuropulmonary AL amyloid imaging with technetium-99m labelled aprotinin. Eur J Nucl Med 22:1393–1401

    Article  CAS  PubMed  Google Scholar 

  24. Schaadt BK, Hendel HW, Gimsing P et al (2003) 99mTc-aprotinin scintigraphy in amyloidosis. J Nucl Med 44:177–183

    PubMed  Google Scholar 

  25. Wall JS, Kennel SJ, Stuckey AC et al (2010) Radioimmunodetection of amyloid deposits in patients with AL amyloidosis. Blood 116:2241–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glaudemans AW, van Rheenen RW, van den Berg MP et al (2014) Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid 21:35–44

    Article  CAS  PubMed  Google Scholar 

  27. Perugini E, Guidalotti PL, Salvi F et al (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am College Cardiol 46:1076–1084

    Article  Google Scholar 

  28. Boerman OC Radiochemistry of Technetium-99m. www.nkrv.nl/wp-content/uploads/2010/04/Tc99m_Boerman.pdf

  29. Bianchi C, Donadio C, Tramonti G et al (1984) 99mTc-aprotinin: a new tracer for kidney morphology and function. Eur J Nucl Med 9:257–260

    Article  CAS  PubMed  Google Scholar 

  30. Aprile C, Saponaro R, Villa G et al (1986) Assessment of split renal function with 99mTc-aprotinin. Eur J Nucl Med 12:37–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PHS grant R01DK079984 from The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), as well as funds from the Molecular Imaging and Translational Research Program, and Department of Medicine at UTMCK. We thank Dr. Emily Martin for help in proofreading and annotating this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Kennel.

Ethics declarations

Ethical Statement

All animal studies were performed in accordance with protocols approved by the University of Tennessee Institutional Animal Care and Use Committee and in accordance with the guidelines provided by Office of Laboratory Animal Welfare (OLAW) and the Guide for the Care and Use of Laboratory Animals. The University of Tennessee Graduate School of Medicine is a AAALAC-I-accredited institution.

Conflict of Interest

JSW and SJK are inventors on a US patent (# 8.808 666) that describes the use of peptide p5 as an imaging agent for amyloidosis. JSW, SJK, TR, and AS are owners of Solex LLC, which sub-licensed rights to intellectual property from the University of Tennessee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennel, S.J., Stuckey, A., McWilliams-Koeppen, H.P. et al. Tc-99m Radiolabeled Peptide p5 + 14 is an Effective Probe for SPECT Imaging of Systemic Amyloidosis. Mol Imaging Biol 18, 483–489 (2016). https://doi.org/10.1007/s11307-015-0914-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0914-9

Key words

Navigation