Skip to main content

Advertisement

Log in

Development and Screening of Contrast Agents for In Vivo Imaging of Parkinson’s Disease

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The goal was to identify molecular imaging probes that would enter the brain, selectively bind to Parkinson’s disease (PD) pathology, and be detectable with one or more imaging modalities.

Procedure

A library of organic compounds was screened for the ability to bind hallmark pathology in human Parkinson’s and Alzheimer’s disease tissue, alpha-synuclein oligomers and inclusions in two cell culture models, and alpha-synuclein aggregates in cortical neurons of a transgenic mouse model. Finally, compounds were tested for blood–brain barrier permeability using intravital microscopy.

Results

Several lead compounds were identified that bound the human PD pathology, and some showed selectivity over Alzheimer’s pathology. The cell culture models and transgenic mouse models that exhibit alpha-synuclein aggregation did not prove predictive for ligand binding. The compounds had favorable physicochemical properties, and several were brain permeable.

Conclusions

Future experiments will focus on more extensive evaluation of the lead compounds as PET ligands for clinical imaging of PD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  2. Stoessl AJ (2012) Neuroimaging in Parkinson's disease: from pathology to diagnosis. Parkinsonism Relat Disord 18(Suppl 1):S55–9

    Article  PubMed  Google Scholar 

  3. Varrone A, Toth M, Steiger C et al (2011) Kinetic analysis and quantification of the dopamine transporter in the nonhuman primate brain with 11C-PE2I and 18F-FE-PE2I. J Nucl Med 52:132–139

    Article  PubMed  CAS  Google Scholar 

  4. Sasaki T, Ito H, Kimura Y et al (2012) Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med 53:1065–1073

    Article  PubMed  CAS  Google Scholar 

  5. Varrone A, Halldin C (2010) Molecular imaging of the dopamine transporter. J Nucl Med 51:1331–1334

    Article  PubMed  CAS  Google Scholar 

  6. Hurley MJ, Mash DC, Jenner P (2003) Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson's disease examined by RT-PCR. Eur J Neurosci 18:2668–2672

    Article  PubMed  Google Scholar 

  7. Bacskai BJ, Hickey GA, Skoch J et al (2003) Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A 100:12462–12467

    Article  PubMed  CAS  Google Scholar 

  8. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  9. Klunk WE, Engler H, Nordberg A et al (2003) Imaging the pathology of Alzheimer's disease: amyloid-imaging with positron emission tomography. Neuroimaging Clin N Am 13:781–789

    Article  PubMed  Google Scholar 

  10. Klunk WE, Lopresti BJ, Ikonomovic MD et al (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer's disease brain but not in transgenic mouse brain. J Neurosci 25:10598–10606

    Article  PubMed  CAS  Google Scholar 

  11. Mathis CA, Mason NS, Lopresti BJ, Klunk WE (2012) Development of positron emission tomography beta-amyloid plaque imaging agents. Semin Nucl Med 42:423–432

    Article  PubMed  Google Scholar 

  12. McKeith IG, Galasko D, Kosaka K et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47:1113–1124

    Article  PubMed  CAS  Google Scholar 

  13. Cantuti-Castelvetri I, Klucken J, Ingelsson M et al (2005) Alpha-synuclein and chaperones in dementia with Lewy bodies. J Neuropathol Exp Neurol 64:1058–1066

    Article  PubMed  CAS  Google Scholar 

  14. Mathis CA, Wang Y, Holt DP et al (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754

    Article  PubMed  CAS  Google Scholar 

  15. Payton JE, Perrin RJ, Clayton DF, George JM (2001) Protein–protein interactions of alpha-synuclein in brain homogenates and transfected cells. Brain Res Mol Brain Res 95:138–145

    Article  PubMed  CAS  Google Scholar 

  16. McLean PJ, Kawamata H, Hyman BT (2001) Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104:901–912

    Article  PubMed  CAS  Google Scholar 

  17. Wakabayashi K, Engelender S, Yoshimoto M et al (2000) Synphilin-1 is present in Lewy bodies in Parkinson's disease. Ann Neurol 47:521–523

    Article  PubMed  CAS  Google Scholar 

  18. Outeiro TF, Putcha P, Tetzlaff JE et al (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3:e1867

    Article  PubMed  Google Scholar 

  19. Danzer KM, Ruf WP, Putcha P et al (2011) Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336

    Article  PubMed  CAS  Google Scholar 

  20. Unni VK, Weissman TA, Rockenstein E et al (2010) In vivo imaging of alpha-synuclein in mouse cortex demonstrates stable expression and differential subcellular compartment mobility. PLoS One 5:e10589

    Article  PubMed  Google Scholar 

  21. Rockenstein E, Schwach G, Ingolic E et al (2005) Lysosomal pathology associated with alpha-synuclein accumulation in transgenic models using an eGFP fusion protein. J Neurosci Res 80:247–259

    Article  PubMed  CAS  Google Scholar 

  22. Skoch J, Hickey GA, Kajdasz ST et al (2005) In vivo imaging of amyloid-beta deposits in mouse brain with multiphoton microscopy. Methods Mol Biol 299:349–363

    PubMed  CAS  Google Scholar 

  23. Spires-Jones TL, de Calignon A, Meyer-Luehmann M et al (2011) Monitoring protein aggregation and toxicity in Alzheimer's disease mouse models using in vivo imaging. Methods 53:201–207

    Article  PubMed  CAS  Google Scholar 

  24. Edelstein A, Amodaj N, Hoover K, et al. (2010) Computer control of microscopes using microManager. Curr Protoc Mol Biol Chapter 14:Unit14.20

    Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  CAS  Google Scholar 

  26. Swaminathan S, Shen L, Risacher SL et al (2012) Amyloid pathway-based candidate gene analysis of [(11)C]PiB-PET in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Brain Imaging Behav 6:1–15

    Article  PubMed  Google Scholar 

  27. Dishino DD, Welch MJ, Kilbourn MR, Raichle ME (1983) Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J Nucl Med 24:1030–1038

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Julia George, University of Illinois, for the H3C Antibody and to Eliezer Masliah, UCSD, for the Syn-GFP mouse model.

Funding

Michael J. Fox Foundation and NIH AG026240.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Bacskai.

Additional information

Krista L. Neal and Naomi B. Shakerdge contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, K.L., Shakerdge, N.B., Hou, S.S. et al. Development and Screening of Contrast Agents for In Vivo Imaging of Parkinson’s Disease. Mol Imaging Biol 15, 585–595 (2013). https://doi.org/10.1007/s11307-013-0634-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0634-y

Key words

Navigation