Skip to main content
Log in

Evaluation of Inflammatory Response to Acute Ischemia Using Near-Infrared Fluorescent Reactive Oxygen Sensors

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Ischemia-related processes associated with the generation of inflammatory molecules such as reactive oxygen species (ROS) are difficult to detect at the acute stage before the physiologic and anatomic evidence of tissue damage is present. Evaluation of the inflammatory and healing response early after an ischemic event in vivo will aid in treatment selection and patient outcomes. We introduce a novel near-infrared hydrocyanine molecular probe for the detection of ROS as a marker of tissue response to ischemia and a precursor to angiogenesis and remodeling. The synthesized molecular probe, initially a non-fluorescent hydrocyanine conjugated to polyethylene glycol, converts to a highly fluorescent cyanine reporter upon oxidation.

Procedures

The probe was applied in a preclinical mouse model for myocardial infarction, where ligation and removal of a portion of the femoral artery in the hindlimb resulted in temporary ischemia followed by angiogenesis and healing.

Results

The observed increase in fluorescence intensity was approximately sixfold over 24 h in the ischemic tissue relative to the uninjured control limb and was attributed to the higher concentration of ROS in the ischemic tissue.

Conclusions

These results demonstrate the potential for non-invasive sensing for interrogating the inflammatory and healing response in ischemic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van der Laan AM, Piek JJ, van Royen N (2009) Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol 6:515–523

    Article  PubMed  Google Scholar 

  2. Silvestre JS, Mallat Z, Tedgui A, Levy BI (2008) Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78:242–249

    Article  PubMed  CAS  Google Scholar 

  3. Schuster A, Morton G, Chiribiri A et al (2012) Imaging in the management of ischemic cardiomyopathy: special focus on magnetic resonance. J Am Coll Cardiol 59:359–370

    Article  PubMed  Google Scholar 

  4. Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling—role of NAD(P)H oxidase. Mol Cell Biochem 264:85–97

    Article  PubMed  CAS  Google Scholar 

  5. Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81:457–464

    Article  PubMed  CAS  Google Scholar 

  6. Sunderkotter C, Steinbrink K, Goebeler M et al (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    PubMed  CAS  Google Scholar 

  7. Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–8

    Article  PubMed  Google Scholar 

  8. Xie L, Lin AS, Kundu K, et al. (2012) Quantitative imaging of cartilage and bone morphology, reactive oxygen species, and vascularization in a rodent model of osteoarthritis. Arthritis and Rheumatism

  9. Selvam S, Kundu K, Templeman KL et al (2011) Minimally invasive, longitudinal monitoring of biomaterial-associated inflammation by fluorescence imaging. Biomaterials 32:7785–7792

    Article  PubMed  CAS  Google Scholar 

  10. Kundu K, Knight SF, Lee S et al (2010) A significant improvement of the efficacy of radical oxidant probes by the kinetic isotope effect. Angew Chem Int Ed Engl 49:6134–6138

    Article  PubMed  CAS  Google Scholar 

  11. Gustafson T, Yan Y, Newton P et al (2012) A NIR dye for development of peripheral nerve targeted probes. Med Chem Comm 3:685–690

    Article  CAS  Google Scholar 

  12. Gustafson TP, Cao Q, Achilefu S, Berezin MY (2012) Defining a polymethine dye for fluorescence anisotropy applications in the near-infrared spectral range. Chemphyschem: a European journal of chemical physics and physical chemistry

  13. Kundu K, Knight SF, Willett N et al (2009) Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed 48:299–303

    Article  CAS  Google Scholar 

  14. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  15. Kikuchi K, Nagano T, Hayakawa H et al (1993) Real time measurement of nitric oxide produced ex vivo by luminol-H2O2 chemiluminescence method. J Biol Chem 268:23106–23110

    Google Scholar 

  16. Hellingman AA, Bastiaansen AJ, de Vries MR et al (2010) Variations in surgical procedures for hind limb ischaemia mouse models result in differences in collateral formation. Eur J Vasc Endovasc Surg: Off J Eur Soc Vasc Surg 40:796–803

    Article  CAS  Google Scholar 

  17. Niiyama H, Huang NF, Rollins MD, Cooke JP (2009) Murine model of hindlimb ischemia. J Vis Exp (23):1035

  18. Kim J, Cao L, Shvartsman D et al (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11:694–700

    Article  PubMed  CAS  Google Scholar 

  19. Nasongkla N, Chen B, Macaraeg N et al (2009) Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers. J Am Chem Soc 131:3842–3843

    Article  PubMed  CAS  Google Scholar 

  20. Fox ME, Szoka FC, Frechet JM (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42:1141–1151

    Article  PubMed  CAS  Google Scholar 

  21. Liu Y, Bauer AQ, Akers WJ et al (2011) Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery. Surgery 149:689–698

    Article  PubMed  Google Scholar 

  22. Solomon M, White BR, Nothdruft RE et al (2011) Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging. Biomed Opt Express 2:3267–3277

    Google Scholar 

  23. Kim C, Erpelding TN, Maslov K et al (2010) Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. J Biomed Opt 15, 046010

    Google Scholar 

  24. Benson RC, Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163

    Article  PubMed  CAS  Google Scholar 

  25. Berezin MY, Lee H, Akers W, Achilefu S (2007) Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems. Biophys J 93:2892–2899

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Pressly ED, Abendschein DR et al (2011) Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med: Off Publ, Soc Nucl Med 52:1956–1963

    CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate the help of Susannah Grathwohl to implement the HLI method. This research was supported in part by K01RR026095 (WA) from the National Center for Research Resources, National Cancer Institute R21CA149814 (MB), and National Heart Lung and Blood Institute as a Program of Excellence in Nanotechnology (HHSN268201000046C) (MB). SM was supported by the Mallinckrodt Institute of Radiology Summer Research Program. The pulmonology core is supported by NHLBI P50 HL084922 grant from the NIH (RP).

Conflict of Interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikhail Y. Berezin or Walter J. Akers.

Additional information

Selena Magalotti and Tiffany P. Gustafson contributed equally to this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magalotti, S., Gustafson, T.P., Cao, Q. et al. Evaluation of Inflammatory Response to Acute Ischemia Using Near-Infrared Fluorescent Reactive Oxygen Sensors. Mol Imaging Biol 15, 423–430 (2013). https://doi.org/10.1007/s11307-013-0614-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0614-2

Key words

Navigation