Skip to main content

Advertisement

Log in

Tumor Hypoxia Imaging

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

There is a need to measure tumor hypoxia in assessing the aggressiveness of tumor and predicting the outcome of therapy. A number of invasive and noninvasive techniques have been exploited to measure tumor hypoxia, including polarographic needle electrodes, immunohistochemical staining, radionuclide imaging (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]), magnetic resonance imaging (MRI), optical imaging (bioluminescence and fluorescence), and so on. This review article summarizes and discusses the pros and cons of each currently available method for measuring tissue oxygenation. Special emphasis was placed on noninvasive imaging hypoxia with emerging new agents and new imaging technologies to detect the molecular events that are relevant to tumor hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Article  PubMed  CAS  Google Scholar 

  2. Hu M, Polyak K (2008) Microenvironmental regulation of cancer development. Curr Opin Genet Dev 18:27–34

    Article  PubMed  CAS  Google Scholar 

  3. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84

    Article  PubMed  CAS  Google Scholar 

  4. Vaupel P, Mayer A, Hockel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354

    Article  PubMed  CAS  Google Scholar 

  5. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Article  PubMed  CAS  Google Scholar 

  6. Matthews NE, Adams MA, Maxwell LR, Gofton TE, Graham CH (2001) Nitric oxide-mediated regulation of chemosensitivity in cancer cells. J Natl Cancer Inst 93:1879–1885

    Article  PubMed  CAS  Google Scholar 

  7. Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24

    Article  PubMed  Google Scholar 

  8. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:285–289

    Article  PubMed  CAS  Google Scholar 

  9. Hockel M, Vorndran B, Schlenger K, Baussmann E, Knapstein PG (1993) Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol 51:141–149

    Article  PubMed  CAS  Google Scholar 

  10. Nordsmark M, Loncaster J, Chou SC et al (2001) Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int J Radiat Oncol Biol Phys 49:581–586

    Article  PubMed  CAS  Google Scholar 

  11. Nordsmark M, Overgaard J (2000) A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 57:39–43

    Article  PubMed  CAS  Google Scholar 

  12. Evans SM, Judy KD, Dunphy I et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184

    Article  PubMed  CAS  Google Scholar 

  13. Powell ME, Collingridge DR, Saunders MI et al (1999) Improvement in human tumour oxygenation with carbogen of varying carbon dioxide concentrations. Radiother Oncol 50:167–171

    Article  PubMed  CAS  Google Scholar 

  14. Gatenby RA, Moldofsky PJ, Weiner LM (1988) Metastatic colon cancer: correlation of oxygen levels with I-131 F(ab’)2 uptake. Radiology 166:757–759

    PubMed  CAS  Google Scholar 

  15. Brizel DM, Scully SP, Harrelson JM et al (1996) Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res 56:5347–5350

    PubMed  CAS  Google Scholar 

  16. Pauwels EK, Mariani G (2007) Assessment of tumor tissue oxygenation: agents, methods and clinical significance. Drug News Perspect 20:619–626

    Article  PubMed  CAS  Google Scholar 

  17. Rumsey WL, Vanderkooi JM, Wilson DF (1988) Imaging of phosphorescence—a novel method for measuring oxygen distribution in perfused tissue. Science 241:1649–1651

    Article  PubMed  CAS  Google Scholar 

  18. Vinogradov SA, Grosul P, Rozhkov V et al (2003) Oxygen distributions in tissue measured by phosphorescence quenching. Adv Exp Med Biol 510:181–185

    PubMed  CAS  Google Scholar 

  19. Lebedev AY, Cheprakov AV, Sakadzic S et al (2009) Dendritic phosphorescent probes for oxygen imaging in biological systems. ACS Appl Mater Interfaces 1:1292–1304

    Article  PubMed  CAS  Google Scholar 

  20. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ (2009) The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38:539–545

    Article  PubMed  CAS  Google Scholar 

  21. Jobsis FF (1977) Non-invasive, infra-red monitoring of cerebral O2 sufficiency, blood volume, HbO2-Hb shifts and blood flow. Acta Neurol Scand Suppl 64:452–453

    PubMed  CAS  Google Scholar 

  22. Hull EL, Conover DL, Foster TH (1999) Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy. Br J Cancer 79:1709–1716

    Article  PubMed  CAS  Google Scholar 

  23. Kim JG, Liu H (2008) Investigation of biphasic tumor oxygen dynamics induced by hyperoxic gas intervention: the dynamic phantom approach. Appl Opt 47:242–252

    Article  PubMed  CAS  Google Scholar 

  24. Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167:127–145

    Article  PubMed  CAS  Google Scholar 

  25. Chapman JD (1979) Hypoxic sensitizers—implications for radiation therapy. N Engl J Med 301:1429–1432

    Article  PubMed  CAS  Google Scholar 

  26. Raleigh JA, Calkins-Adams DP, Rinker LH et al (1998) Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 58:3765–3768

    PubMed  CAS  Google Scholar 

  27. Evans SM, Hahn S, Pook DR et al. Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60:2018–2024

  28. Evans SM, Koch CJ (2003) Prognostic significance of tumor oxygenation in humans. Cancer Lett 195:1–16

    Article  PubMed  CAS  Google Scholar 

  29. Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12:5435–5441

    Article  PubMed  CAS  Google Scholar 

  30. Raleigh JA, Chou SC, Arteel GE, Horsman MR (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151:580–589

    Article  PubMed  CAS  Google Scholar 

  31. Toma-Dasu I, Dasu A, Brahme A (2009) Quantifying tumour hypoxia by PET imaging—a theoretical analysis. Adv Exp Med Biol 645:267–272

    Article  PubMed  Google Scholar 

  32. Massoud TF, Gambhir SS (2007) Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol Med 13:183–191

    Article  PubMed  CAS  Google Scholar 

  33. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  PubMed  CAS  Google Scholar 

  34. Swartz HM, Clarkson RB (1998) The measurement of oxygen in vivo using EPR techniques. Phys Med Biol 43:1957–1975

    Article  PubMed  CAS  Google Scholar 

  35. Matsumoto K, English S, Yoo J et al (2004) Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magn Reson Med 52:885–892

    Article  PubMed  CAS  Google Scholar 

  36. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S

    Article  PubMed  CAS  Google Scholar 

  37. Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11:024015

    Article  PubMed  CAS  Google Scholar 

  38. Padhani A (2010) Science to practice: what does MR oxygenation imaging tell us about human breast cancer hypoxia? Radiology 254:1–3

    Article  PubMed  Google Scholar 

  39. Howe FA, Robinson SP, McIntyre DJ, Stubbs M, Griffiths JR (2001) Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed 14:497–506

    Article  PubMed  CAS  Google Scholar 

  40. Stubbs M (1999) Application of magnetic resonance techniques for imaging tumour physiology. Acta Oncol 38:845–853

    Article  PubMed  CAS  Google Scholar 

  41. Tumkur SM, Vu AT, Li LP, Pierchala L, Prasad PV (2006) Evaluation of intra-renal oxygenation during water diuresis: a time-resolved study using BOLD MRI. Kidney Int 70:139–143

    Article  PubMed  CAS  Google Scholar 

  42. O’Connor JP, Naish JH, Parker GJ et al (2009) Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: a potential novel biomarker of oxygenation changes in solid tumors. Int J Radiat Oncol Biol Phys 75:1209–1215

    Article  PubMed  CAS  Google Scholar 

  43. Mason RP (2006) Non-invasive assessment of kidney oxygenation: a role for BOLD MRI. Kidney Int 70:10–11

    Article  PubMed  CAS  Google Scholar 

  44. Thomas SR, Pratt RG, Millard RW et al (1996) In vivo PO2 imaging in the porcine model with perfluorocarbon F-19 NMR at low field. Magn Reson Imaging 14:103–114

    Article  PubMed  CAS  Google Scholar 

  45. Mason RP, Shukla H, Antich PP (1993) In vivo oxygen tension and temperature: simultaneous determination using 19F NMR spectroscopy of perfluorocarbon. Magn Reson Med 29:296–302

    Article  PubMed  CAS  Google Scholar 

  46. Zhao D, Ran S, Constantinescu A, Hahn EW, Mason RP (2003) Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Neoplasia 5:308–318

    PubMed  Google Scholar 

  47. van der Sanden BP, Heerschap A, Simonetti AW et al. Characterization and validation of noninvasive oxygen tension measurements in human glioma xenografts by 19F-MR relaxometry. Int J Radiat Oncol Biol Phys 44:649–658

  48. McNab JA, Yung AC, Kozlowski P (2004) Tissue oxygen tension measurements in the Shionogi model of prostate cancer using 19F MRS and MRI. Magma 17:288–295

    Article  PubMed  CAS  Google Scholar 

  49. Davda S, Bezabeh T (2006) Advances in methods for assessing tumor hypoxia in vivo: implications for treatment planning. Cancer Metastasis Rev 25:469–480

    Article  PubMed  Google Scholar 

  50. Yu JX, Kodibagkar VD, Cui W, Mason RP (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848

    Article  PubMed  CAS  Google Scholar 

  51. Hunjan S, Zhao D, Constantinescu A et al (2001) Tumor oximetry: demonstration of an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor. Int J Radiat Oncol Biol Phys 49:1097–1108

    Article  PubMed  CAS  Google Scholar 

  52. Kwock L, Gill M, McMurry HL et al (1992) Evaluation of a fluorinated 2-nitroimidazole binding to hypoxic cells in tumor-bearing rats by 19F magnetic resonance spectroscopy and immunohistochemistry. Radiat Res 129:71–78

    Article  PubMed  CAS  Google Scholar 

  53. Salmon HW, Siemann DW (2004) Utility of 19F MRS detection of the hypoxic cell marker EF5 to assess cellular hypoxia in solid tumors. Radiother Oncol 73:359–366

    Article  PubMed  Google Scholar 

  54. Lee CP, Payne GS, Oregioni A et al (2009) A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy. Br J Cancer 101:1860–1868

    Article  PubMed  CAS  Google Scholar 

  55. Rasey JS, Koh WJ, Evans ML et al (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428

    Article  PubMed  CAS  Google Scholar 

  56. Lehtio K, Eskola O, Viljanen T et al (2004) Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. Int J Radiat Oncol Biol Phys 59:971–982

    Article  PubMed  Google Scholar 

  57. Souvatzoglou M, Grosu AL, Roper B et al (2007) Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 34:1566–1575

    Article  PubMed  CAS  Google Scholar 

  58. Koh WJ, Rasey JS, Evans ML et al (1992) Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 22:199–212

    Article  PubMed  CAS  Google Scholar 

  59. Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 37:451–461

    Article  PubMed  Google Scholar 

  60. Gagel B, Reinartz P, Demirel C et al (2006) [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 6:51

    Article  PubMed  CAS  Google Scholar 

  61. Eschmann SM, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260

    PubMed  Google Scholar 

  62. Rajendran JG, Mankoff DA, O’Sullivan F et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252

    Article  PubMed  CAS  Google Scholar 

  63. Koh WJ, Bergman KS, Rasey JS et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33:391–398

    Article  PubMed  CAS  Google Scholar 

  64. Rajendran JG, Wilson DC, Conrad EU et al (2003) [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704

    Article  PubMed  CAS  Google Scholar 

  65. Bentzen L, Keiding S, Nordsmark M et al (2003) Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 67:339–344

    Article  PubMed  CAS  Google Scholar 

  66. Lehtio K, Oikonen V, Gronroos T et al (2001) Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with [(15)O]H(2)O and [(18)F]fluoroerythronitroimidazole PET. J Nucl Med 42:1643–1652

    PubMed  CAS  Google Scholar 

  67. Yang DJ, Wallace S, Cherif A et al (1995) Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194:795–800

    PubMed  CAS  Google Scholar 

  68. Barthel H, Wilson H, Collingridge DR et al (2004) In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer 90:2232–2242

    PubMed  CAS  Google Scholar 

  69. Ziemer LS, Evans SM, Kachur AV et al (2003) Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. Eur J Nucl Med Mol Imaging 30:259–266

    Article  PubMed  CAS  Google Scholar 

  70. Evans SM, Kachur AV, Shiue CY et al (2000) Noninvasive detection of tumor hypoxia using the 2-nitroimidazole [18F]EF1. J Nucl Med 41:327–336

    PubMed  CAS  Google Scholar 

  71. Koch CJ, Evans SM (2003) Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 510:285–292

    PubMed  CAS  Google Scholar 

  72. Komar G, Seppanen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951

    Article  PubMed  Google Scholar 

  73. Evans SM, Fraker D, Hahn SM et al (2006) EF5 binding and clinical outcome in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 64:922–927

    Article  PubMed  CAS  Google Scholar 

  74. Dolbier WR Jr, Li AR, Koch CJ, Shiue CY, Kachur AV (2001) [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl Radiat Isot 54:73–80

    Article  PubMed  CAS  Google Scholar 

  75. Kumar P, Emami S, Kresolek Z et al (2009) Synthesis and hypoxia selective radiosensitization potential of beta-2-FAZA and beta-3-FAZL: fluorinated azomycin beta-nucleosides. Med Chem 5:118–129

    Article  PubMed  CAS  Google Scholar 

  76. Postema EJ, McEwan AJ, Riauka TA et al (2009) Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 36:1565–1573

    Article  PubMed  CAS  Google Scholar 

  77. Riedl CC, Brader P, Zanzonico PB et al (2008) Imaging hypoxia in orthotopic rat liver tumors with iodine 124-labeled iodoazomycin galactopyranoside PET. Radiology 248:561–570

    Article  PubMed  Google Scholar 

  78. Riedl CC, Brader P, Zanzonico P et al (2008) Tumor hypoxia imaging in orthotopic liver tumors and peritoneal metastasis: a comparative study featuring dynamic 18F-MISO and 124I-IAZG PET in the same study cohort. Eur J Nucl Med Mol Imaging 35:39–46

    Article  PubMed  Google Scholar 

  79. Zanzonico P, O’Donoghue J, Chapman JD et al (2004) Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging 31:117–128

    Article  PubMed  Google Scholar 

  80. Fujibayashi Y, Taniuchi H, Yonekura Y et al (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160

    PubMed  CAS  Google Scholar 

  81. Lewis JS, Herrero P, Sharp TL et al (2002) Delineation of hypoxia in canine myocardium using PET and copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone). J Nucl Med 43:1557–1569

    PubMed  Google Scholar 

  82. O’Donoghue JA, Zanzonico P, Pugachev A et al (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N 4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61:1493–1502

    Article  PubMed  CAS  Google Scholar 

  83. Takahashi N, Fujibayashi Y, Yonekura Y et al (2000) Evaluation of 62Cu labeled diacetyl-bis(N 4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med 14:323–328

    Article  PubMed  CAS  Google Scholar 

  84. Vavere AL, Lewis JS (2007) Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 4893–4902

  85. Dehdashti F, Grigsby PW, Mintun MA et al (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238

    Article  PubMed  Google Scholar 

  86. Lewis J, Laforest R, Buettner T et al (2001) Copper-64-diacetyl-bis(N 4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci USA 98:1206–1211

    Article  PubMed  CAS  Google Scholar 

  87. Obata A, Kasamatsu S, Lewis JS et al (2005) Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol 32:21–28

    Article  PubMed  CAS  Google Scholar 

  88. Lewis JS, Laforest R, Dehdashti F et al (2008) An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med 49:1177–1182

    Article  PubMed  Google Scholar 

  89. Urtasun RC, Parliament MB, McEwan AJ et al. Measurement of hypoxia in human tumours by non-invasive SPECT imaging of iodoazomycin arabinoside. Br J Cancer Suppl 27:S209–S212

  90. Stypinski D, Wiebe LI, McEwan AJ et al (1999) Clinical pharmacokinetics of 123I-IAZA in healthy volunteers. Nucl Med Commun 20:559–567

    Article  PubMed  CAS  Google Scholar 

  91. Stypinski D, McQuarrie SA, Wiebe LI et al (2001) Dosimetry estimations for 123I-IAZA in healthy volunteers. J Nucl Med 42:1418–1423

    PubMed  CAS  Google Scholar 

  92. Iyer RV, Kim E, Schneider RF, Chapman JD (1988) A dual hypoxic marker technique for measuring oxygenation change within individual tumors. Br J Cancer 78:163–169

    Article  Google Scholar 

  93. Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674–1686

    Article  PubMed  CAS  Google Scholar 

  94. Saitoh J, Sakurai H, Suzuki Y et al (2002) Correlations between in vivo tumor weight, oxygen pressure, 31P NMR spectroscopy, hypoxic microenvironment marking by beta-d-iodinated azomycin galactopyranoside (beta-d-IAZGP), and radiation sensitivity. Int J Radiat Oncol Biol Phys 54:903–909

    Article  PubMed  CAS  Google Scholar 

  95. Ballinger JR, Kee JW, Rauth AM (1996) In vitro and in vivo evaluation of a technetium-99m-labeled 2-nitroimidazole (BMS181321) as a marker of tumor hypoxia. J Nucl Med 37:1023–1031

    PubMed  CAS  Google Scholar 

  96. Hoebers FJ, Janssen HL, Olmos AV et al (2002) Phase 1 study to identify tumour hypoxia in patients with head and neck cancer using technetium-99m BRU 59-21. Eur J Nucl Med Mol Imaging 29:1206–1211

    Article  PubMed  CAS  Google Scholar 

  97. Yutani K, Kusuoka H, Fukuchi K, Tatsumi M, Nishimura T (1999) Applicability of 99mTc-HL91, a putative hypoxic tracer, to detection of tumor hypoxia. J Nucl Med 40:854–861

    PubMed  CAS  Google Scholar 

  98. Liu Z, Stevenson GD, Barrett HH et al. Imaging recognition of multidrug resistance in human breast tumors using 99mTc-labeled monocationic agents and a high-resolution stationary SPECT system. Nucl Med Biol 31:53–65

  99. Bussink J, Kaanders JH, van der Kogel AJ (2003) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67:3–15

    Article  PubMed  Google Scholar 

  100. Koukourakis MI, Bentzen SM, Giatromanolaki A et al (2006) Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 24:727–735

    Article  PubMed  CAS  Google Scholar 

  101. Koukourakis MI, Giatromanolaki A, Polychronidis A et al (2006) Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer. Cancer Sci 97:582–588

    Article  PubMed  CAS  Google Scholar 

  102. Le QT, Kong C, Lavori PW et al (2007) Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 69:167–175

    Article  PubMed  CAS  Google Scholar 

  103. Wang GL, Jiang BH, Semenza GL (1995) Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem Biophys Res Commun 216:669–675

    Article  PubMed  CAS  Google Scholar 

  104. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    PubMed  CAS  Google Scholar 

  105. Semenza GL (2001) Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 49:614–617

    Article  PubMed  CAS  Google Scholar 

  106. Maxwell P, Salnikow K (2004) HIF-1: an oxygen and metal responsive transcription factor. Cancer Biol Ther 3:29–35

    Article  PubMed  CAS  Google Scholar 

  107. Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59:47–53

    Article  PubMed  CAS  Google Scholar 

  108. Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    PubMed  CAS  Google Scholar 

  109. Moon EJ, Brizel DM, Chi JT, Dewhirst MW (2007) The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 9:1237–1294

    Article  PubMed  CAS  Google Scholar 

  110. Birner P, Schindl M, Obermair A et al (2000) Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 60:4693–4696

    PubMed  CAS  Google Scholar 

  111. Shibata T, Giaccia AJ, Brown JM (2000) Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther 7:493–498

    Article  PubMed  CAS  Google Scholar 

  112. Payen E, Bettan M, Henri A et al (2001) Oxygen tension and a pharmacological switch in the regulation of transgene expression for gene therapy. J Gene Med 3:498–504

    Article  PubMed  CAS  Google Scholar 

  113. Vordermark D, Shibata T, Brown JM (2001) Green fluorescent protein is a suitable reporter of tumor hypoxia despite an oxygen requirement for chromophore formation. Neoplasia 3:527–534

    Article  PubMed  CAS  Google Scholar 

  114. Harada H, Kizaka-Kondoh S, Hiraoka M (2005) Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging 4:182–193

    PubMed  Google Scholar 

  115. Harada H, Hiraoka M, Kizaka-Kondoh S (2002) Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 62:2013–2018

    PubMed  CAS  Google Scholar 

  116. Harada H, Kizaka-Kondoh S, Hiraoka M (2006) Mechanism of hypoxia-specific cytotoxicity of procaspase-3 fused with a VHL-mediated protein destruction motif of HIF-1alpha containing Pro564. FEBS Lett 580:5718–5722

    Article  PubMed  CAS  Google Scholar 

  117. Harada H, Kizaka-Kondoh S, Li G et al (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26:7508–7516

    Article  PubMed  CAS  Google Scholar 

  118. Viola RJ, Provenzale JM, Li F et al (2008) In vivo bioluminescence imaging monitoring of hypoxia-inducible factor 1alpha, a promoter that protects cells, in response to chemotherapy. AJR Am J Roentgenol 191:1779–1784

    Article  PubMed  Google Scholar 

  119. Mayer A, Wree A, Hockel M et al (2004) Lack of correlation between expression of HIF-1alpha protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res 64:5876–5881

    Article  PubMed  CAS  Google Scholar 

  120. Lehmann S, Stiehl DP, Honer M et al (2009) Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events. Proc Natl Acad Sci USA 106:14004–14009

    Article  PubMed  CAS  Google Scholar 

  121. Potter CP, Harris AL (2003) Diagnostic, prognostic and therapeutic implications of carbonic anhydrases in cancer. Br J Cancer 89:2–7

    Article  PubMed  CAS  Google Scholar 

  122. Ivanov S, Liao SY, Ivanova A et al (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    Article  PubMed  CAS  Google Scholar 

  123. Wykoff CC, Beasley NJ, Watson PH et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

  124. Dubois L, Lieuwes NG, Maresca A et al (2009) Imaging of CA IX with fluorescent labelled sulfonamides distinguishes hypoxic and (re)-oxygenated cells in a xenograft tumour model. Radiother Oncol 92:423–428

    Article  PubMed  CAS  Google Scholar 

  125. van Dijk J, Uemura H, Beniers AJ et al. Therapeutic effects of monoclonal antibody G250, interferons and tumor necrosis factor, in mice with renal-cell carcinoma xenografts. Int J Cancer 56:262–268

  126. Stillebroer AB, Oosterwijk E, Oyen WJ, Mulders PF, Boerman OC (2007) Radiolabeled antibodies in renal cell carcinoma. Cancer Imaging 7:179–188

    Article  PubMed  Google Scholar 

  127. Ahlskog JK, Schliemann C, Marlind J et al (2009) Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br J Cancer 101:645–657

    Article  PubMed  CAS  Google Scholar 

  128. Hoogsteen IJ, Marres HA, Wijffels KI et al (2005) Colocalization of carbonic anhydrase 9 expression and cell proliferation in human head and neck squamous cell carcinoma. Clin Cancer Res 11:97–106

    PubMed  CAS  Google Scholar 

  129. Kim SJ, Shin HJ, Jung KY et al (2007) Prognostic value of carbonic anhydrase IX and Ki-67 expression in squamous cell carcinoma of the tongue. Jpn J Clin Oncol 37:812–819

    Article  PubMed  Google Scholar 

  130. Mayer A, Hockel M, Vaupel P (2005) Carbonic anhydrase IX expression and tumor oxygenation status do not correlate at the microregional level in locally advanced cancers of the uterine cervix. Clin Cancer Res 11:7220–7225

    Article  PubMed  CAS  Google Scholar 

  131. Westra J, Molema G, Kallenberg CG (2010) Hypoxia-inducible factor-1 as regulator of angiogenesis in rheumatoid arthritis—therapeutic implications. Curr Med Chem 17:254–263

    Article  PubMed  CAS  Google Scholar 

  132. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    Article  PubMed  CAS  Google Scholar 

  133. Rogers S, Macheda ML, Docherty SE et al (2002) Identification of a novel glucose transporter-like protein-GLUT-12. Am J Physiol Endocrinol Metab 282:E733–E738

    PubMed  CAS  Google Scholar 

  134. Airley RE, Loncaster J, Raleigh JA et al (2003) GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 104:85–91

    Article  PubMed  CAS  Google Scholar 

  135. Jonathan RA, Wijffels KI, Peeters W et al (2006) The prognostic value of endogenous hypoxia-related markers for head and neck squamous cell carcinomas treated with ARCON. Radiother Oncol 79:288–297

    Article  PubMed  CAS  Google Scholar 

  136. Grosso AR, Martins S, Carmo-Fonseca M (2008) The emerging role of splicing factors in cancer. EMBO Rep 9:1087–1093

    Article  PubMed  CAS  Google Scholar 

  137. Martinkova J, Gadher SJ, Hajduch M, Kovarova H (2009) Challenges in cancer research and multifaceted approaches for cancer biomarker quest. FEBS Lett 583:1772–1784

    Article  PubMed  CAS  Google Scholar 

  138. Koong AC, Denko NC, Hudson KM et al (2000) Candidate genes for the hypoxic tumor phenotype. Cancer Res 60:883–887

    PubMed  CAS  Google Scholar 

  139. Lal A, Peters H, St Croix B et al (2001) Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 93:1337–1343

    Article  PubMed  CAS  Google Scholar 

  140. Chen JL, Lucas JE, Schroeder T et al (2008) The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet 4:e1000293

    Article  PubMed  CAS  Google Scholar 

  141. Starmans MH, Zips D, Wouters BG, Baumann M, Lambin P (2009) The use of a comprehensive tumour xenograft dataset to validate gene signatures relevant for radiation response. Radiother Oncol 92:417–422

    Article  PubMed  CAS  Google Scholar 

  142. Rho JH, Qin S, Wang JY, Roehrl MH (2008) Proteomic expression analysis of surgical human colorectal cancer tissues: up-regulation of PSB7, PRDX1, and SRP9 and hypoxic adaptation in cancer. J Proteome Res 7:2959–2972

    Article  PubMed  CAS  Google Scholar 

  143. Picchio M, Beck R, Haubner R et al (2008) Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med 49:597–605

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH). G.N., who currently has an Imaging Sciences Training Fellowship, is jointly supported by the Radiology and Imaging Sciences Department, NIH Clinical Center, and the Intramural Research Program, NIBIB, NIH.

Conflict of interest disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Niu or Xiaoyuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Niu, G., Chan, N. et al. Tumor Hypoxia Imaging. Mol Imaging Biol 13, 399–410 (2011). https://doi.org/10.1007/s11307-010-0420-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0420-z

Key words

Navigation