Skip to main content
Log in

Folate-Polyethylene Glycol Conjugated Near-Infrared Fluorescence Probe with High Targeting Affinity and Sensitivity for In Vivo Early Tumor Diagnosis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to synthesize a folate-polyethylene glycol (PEG) conjugated near-infrared fluorescence probe (fPI-01) for diagnosis of folate receptor (FR)-overexpressed tumors with high sensitivity and specificity.

Procedures

fPI-01 was synthesized, purified, and characterized. Its cytotoxicity and affinity to tumor cells were determined in vitro. The dynamics and biodistribution of the probe was monitored in normal nude mice. And the tumor-targeting capability was investigated in nude mice bearing different tumor xenograft.

Results

fPI-01 was successfully synthesized with strengthened optical properties. Cells experiments showed the probe had high FR affinity and without apparent cytotoxicity. Animal experiments indicated the probe excreted through urine by kidney. And its tumor-targeting ability was demonstrated on different tumor-bearing mice, with high sensitivity and tumor-to-normal tissue contrast ratio (10:1).

Conclusions

fPI-01 is a promising optical agent for diagnosis of FR-positive tumors, especially in their early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Abbreviations

FR:

folate receptor

PEG:

polyethylene glycol

DCC:

1-(3-dimethylaminopropyl)-3-ethylcarboiimide

NHS:

N-hydroxysuccinimide

TLC:

thin layer chromatography

MTT:

3-(4,5-dimethylthialzol-2-yl)-2,5-diphenyl tetrazolium bromide

CCD:

charge-coupled device

NIR:

near infrared

References

  1. Okarvi SM, Jammaz IA (2006) Preparation and in vitro and in vivo evaluation of technetium-99m-labeled folate and methotrexate conjugates as tumor imaging agents. Cancer Biother Radiopharm 21:49–60

    Article  CAS  PubMed  Google Scholar 

  2. Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci (USA) 88:5572–5576

    Article  CAS  Google Scholar 

  3. Guo W, Hinkle GH, Lee RJ (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40:1563–1569

    CAS  PubMed  Google Scholar 

  4. Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100:247–256

    Article  CAS  PubMed  Google Scholar 

  5. Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6:44–51

    Article  CAS  PubMed  Google Scholar 

  6. Pan J, Feng SS (2009) Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)—loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183

    Article  CAS  PubMed  Google Scholar 

  7. Siegel BA, Dehdashti F, Mutch DG et al (2003) Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 44:700–707

    CAS  PubMed  Google Scholar 

  8. Müller C, Schubiger PA, Schibli R (2007) Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol 34:595–601

    Article  PubMed  Google Scholar 

  9. Sega EI, Low PS (2008) Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev 27:655–664

    Article  CAS  PubMed  Google Scholar 

  10. Chen WT, Mahmood U, Weissleder R, Tung CH (2005) Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther 7:310–317

    Article  CAS  Google Scholar 

  11. Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14:021009

    Article  PubMed  Google Scholar 

  12. Reddy JA, Westrick E, Santhapuram HK et al (2007) Folate receptor-specific antitumor activity of EC131, a folate-maytansinoid conjugate. Cancer Res 67:6376–6382

    Article  CAS  PubMed  Google Scholar 

  13. Yamada A, Taniguchi Y, Kawano K, Honda T, Hattori Y, Maitani Y (2008) Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin Cancer Res 14:8161–8168

    Article  CAS  PubMed  Google Scholar 

  14. Pan J, Feng SS (2008) Targeted delivery of paclitaxel using folate-decorated poly (lactide)-vitamin E TPGS nanoparticles. Biomaterials 29:2663–2672

    Article  CAS  PubMed  Google Scholar 

  15. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT (1996) Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 14:1574–1578

    Article  CAS  PubMed  Google Scholar 

  16. Luten J, van Steenbergen MJ, Lok MC et al (2008) Degradable PEG-folate coated poly(DMAEA-co-BA)phosphazene-based polyplexes exhibit receptor-specific gene expression. Eur J Pharm Sci 33:241–251

    Article  CAS  PubMed  Google Scholar 

  17. Thekkek N, Richards-Kortum R (2008) Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer 8:725–731

    Article  CAS  PubMed  Google Scholar 

  18. Pierce MC, Javier DJ, Richards-Kortum R (2008) Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer 123:1979–1990

    Article  CAS  PubMed  Google Scholar 

  19. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378

    Article  CAS  PubMed  Google Scholar 

  20. Mahmood U, Tung CH, Bogdanov A et al (1999) In vivo near-infrared fluorescence imaging of carcinoembryonic antigen–expressing tumor cells in mice. Radiology 213:866–870

    CAS  PubMed  Google Scholar 

  21. Ogawa M, Regino CA, Choyke PL, Kobayashi H (2009) In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies. Mol Cancer Ther 8:232–239

    Article  CAS  PubMed  Google Scholar 

  22. Björnsson OG, Murphy R, Chadwick VS (1982) Physiochemical studies of indocyanine green (ICG): absorbance/concentration relationship, pH tolerance and assay precision in various solvents. Experientia 38:1441–1442

    Article  PubMed  Google Scholar 

  23. Zou P, Xu S, Povoski SP et al (2009) Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol Pharm 6:428–440

    Article  CAS  PubMed  Google Scholar 

  24. Xiao W, Yao N, Peng L, Liu R, Lam KS (2009) Near-infrared optical imaging in glioblastoma xenograft with ligand-targeting alpha3 integrin. Eur J Nucl Med Mol Imaging 36:94–103

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin αβ3 in brain tumor xenograft. Cancer Res 64:8009–8014

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto Y, Tsutsumi Y, Yoshioka Y et al (2003) Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat Biotechnol 21:546–552

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Zhang Y, Liu J, Zhang C, Gu N, Li F (2008) Preparation of anti-sperm protein 17 immunomagnetic nanoparticles for targeting cell. J Nanosci Nanotechnol 8:2341–2346

    Article  CAS  PubMed  Google Scholar 

  28. Tung CH, Lin Y, Moon WK, Weissleder R (2002) A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. Chembiochem 8:784–786

    Article  Google Scholar 

  29. Stefflova K, Li H, Chen J, Zheng G (2007) Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem 18:379–388

    Article  CAS  PubMed  Google Scholar 

  30. Ye Y, Bloch S, Kao J, Achilefu S (2005) Multivalent carbocyanine molecular probes: synthesis and applications. Bioconjug Chem 16:51–61

    Article  CAS  PubMed  Google Scholar 

  31. Qian H, Gu Y, Wang M, Achilefu S (2009) Optimization of the near-infrared fluorescence labeling for in vivo monitoring of a protein drug distribution in animal model. J Fluoresc 19:277–284

    Article  CAS  PubMed  Google Scholar 

  32. Furukawa S, Katayama N, Iizuka T et al (1980) Preparation of polyethylene glycol-bound NAD and its application in a model enzyme reactor. FEBS Lett 121:239–242

    Article  CAS  Google Scholar 

  33. Chen H, Zhang J, Qian Z et al (2008) In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel. Nanotechnology 19:185707–185717

    Article  Google Scholar 

  34. Hong G, Yuan R, Liang B, Shen J, Yang X, Shuai X (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices 10:693–700

    Article  CAS  PubMed  Google Scholar 

  35. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci (USA) 102:11600–11605

    Article  CAS  Google Scholar 

  36. Kang B, Yu D, Chang S, Chen D, Dai Y, Ding Y (2008) Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology 19:375103–375111

    Article  Google Scholar 

  37. Hsu AR, Hou LC, Veeravagu A et al (2006) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. MolImaging Biol 8:315–323

    Article  PubMed  Google Scholar 

  38. Destito G, Yeh R, Rae CS, Finn MG, Manchester M (2007) Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 14:1152–1162

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Chen H, Xu L, Gu Y (2008) The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model. J Control Release 131:34–40

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Wang Y, Xu J et al (2008) Non-invasive near infrared fluorescence imaging of CdHgTe quantum dots in mouse model. J Fluoresc 18:801–811

    Article  CAS  PubMed  Google Scholar 

  41. Ryan SM, Mantovani G, Wang X, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 5:371–383

    Article  CAS  PubMed  Google Scholar 

  42. Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91:103–113

    Article  CAS  PubMed  Google Scholar 

  43. Leamon CP, Reddy JA, Vlahov IR, Kleindl PJ, Vetzel M, Westrick E (2006) Synthesis and biological evaluation of EC140: a novel folate-targeted vinca alkaloid conjugate. Bioconjug Chem 17:1226–1232

    Article  CAS  PubMed  Google Scholar 

  44. Leamon CP, Reddy JA (2004) Folate-targeted chemotherapy. Adv Drug Deliv Rev 56:1127–1141

    Article  CAS  PubMed  Google Scholar 

  45. Kim BK, Kwon SY, Ko SY et al (2008) Treatment with pegylated interferon and ribavirin in a patient with fibrosing cholestatic hepatitis due to recurrent hepatitis C after liver transplantation. Korean J Hepatol 14:519–524

    Article  PubMed  Google Scholar 

  46. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Chem 338:284–293

    CAS  Google Scholar 

  47. Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129

    Article  CAS  PubMed  Google Scholar 

  48. Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptor. Expert Opin Drug Deliv 5:309–319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation Committee of China (NSFC30371362, 30672015, 30700779, 30800257, 30970776) and the major project from the Ministry of Science and Technology for new drug development (2009ZX09310-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqing Gu.

Additional information

Its significance: A folate receptor-targeted near-infrared fluorescence probe (folate-PEG-ICG-Der-01 probe, fPI-01) was synthesized with strengthened fluorescence intensity and photostability. The satisfactory targeting capability for folate receptor-overexpressed tumors was demonstrated in different tumor-bearing mice. The PEG4000 conjugation did improve the dynamics of the probe in mice subjects and enhance the targeting capability and sensitivity to FR-overexpressed tumors. Results in our study indicated the probe possesses great potential in the diagnosis of early stage tumors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Deng, D., Chen, X. et al. Folate-Polyethylene Glycol Conjugated Near-Infrared Fluorescence Probe with High Targeting Affinity and Sensitivity for In Vivo Early Tumor Diagnosis. Mol Imaging Biol 12, 595–607 (2010). https://doi.org/10.1007/s11307-010-0305-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0305-1

Key words

Navigation