Skip to main content

Advertisement

Log in

Dual In Vivo Quantification of Integrin-targeted and Protease-activated Agents in Cancer Using Fluorescence Molecular Tomography (FMT)

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Integrins, especially αvβ3 and αvβ5, are upregulated in tumor cells and activated endothelial cells and as such, serve as cancer biomarkers. We developed a novel near-infrared-labeled optical agent for the in vivo detection and quantification of αvβ3vβ5.

Procedures

A small peptidomimetic αvβ3 antagonist was synthesized, coupled to a near-infrared fluorescent (NIRF) dye, and tested for binding specificity using integrin-overexpressing cells, inhibition of vitronectin-mediated cell attachment, binding to tumor and endothelial cells in vitro, and competition studies. Pharmacokinetics, biodistribution, specificity of tumor targeting, and the effect of an antiangiogenic treatment were assessed in vivo.

Results

The integrin NIRF agent showed strong selectivity towards αvβ3/αvβ5 in vitro and predominant tumor distribution in vivo, allowing noninvasive and real-time quantification of integrin signal in tumors. Antiangiogenic treatment significantly inhibited integrin signal in vivo but had no effect on a cathepsin-cleavable NIR agent. Simultaneous imaging revealed different patterns of distribution reflecting the underlying differences in integrin and cathepsin biology during tumor progression.

Conclusions

NIRF-labeled integrin antagonists allow noninvasive molecular fluorescent imaging and quantification of tumors in vivo, improving and providing more refined approaches for cancer detection and treatment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  PubMed  Google Scholar 

  2. Lu X, Lu D, Scully MF et al (2008) The role of integrin-mediated cell adhesion in atherosclerosis: pathophysiology and clinical opportunities. Curr Pharm Des 14:2140–2158

    Article  CAS  PubMed  Google Scholar 

  3. Stupack DG (2007) The biology of integrins. Oncology 21:6–12

    PubMed  Google Scholar 

  4. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  5. Friedlander M, Theesfeld CL, Sugita M et al (1996) Involvement of integrins αvß3 and αv ß5 in ocular neovascular diseases. Proc Natl Acad Sci USA 93:9764–9769

    Article  CAS  PubMed  Google Scholar 

  6. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alphavbeta3 for angiogenesis. Science 264:569–571

    Article  CAS  PubMed  Google Scholar 

  7. Gasparini G, Brooks PC, Biganzoli E et al (1998) Vascular integrin αvß3: a new prognostic indicator in breast cancer. Clin Cancer Res 4:2625–2634

    CAS  PubMed  Google Scholar 

  8. Vonlaufen A, Wiedle G, Borisch B, Birrer S, Luder P, Imhof BA (2001) Integrin αvß3 expression in colon carcinoma correlates with survival. Mod Pathol 14:1126–1132

    Article  CAS  PubMed  Google Scholar 

  9. Gutheil JC, Campbell TN, Pierce PR et al (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res 6:3056–3061

    CAS  PubMed  Google Scholar 

  10. Mulgrew K, Kinneer K, Yao XT et al (2006) Direct targeting of αvβ3 integrin on tumor cells with a monoclonal antibody, Abegrin™. Mol Cancer Ther 5:3122–3129

    Article  CAS  PubMed  Google Scholar 

  11. Hariharan S, Gustafson D, Holden S et al (2007) Assessment of the biological and pharmacological effects of the αvβ3 and αvβ5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann Onc 18:1400–1407

    Article  CAS  Google Scholar 

  12. Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455

    Article  CAS  PubMed  Google Scholar 

  13. Dijkgraaf I, Beer AJ, Wester HJ (2009) Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci 14:887–899

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS (2004) MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49

    Article  PubMed  Google Scholar 

  15. Chen X, Park R, Shahinian AH et al (2004) 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189

    Article  CAS  PubMed  Google Scholar 

  16. Haubner R, Wester HJ, Weber WA et al (2001) Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    CAS  PubMed  Google Scholar 

  17. Janssen ML, Oyen WJ, Dijkgraaf I et al (2002) Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151

    CAS  PubMed  Google Scholar 

  18. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Dev 17:545–580

    Article  CAS  Google Scholar 

  19. Leong-Poi H, Christiansen J, Klibanov AL, Kaul S, Lindner JR (2003) Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to αv integrins. Circulation 107:455–460

    Article  CAS  PubMed  Google Scholar 

  20. Ellegala DB, Leong-Poi H, Carpenter JE et al (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation 108:336–341

    Article  PubMed  Google Scholar 

  21. Sipkins DA, Cheresh DA, Kazemi M, Nevin LM, Bednarski MD, Li KCP (1998) Detection of tumor angiogenesis in vivo by alphavbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  CAS  PubMed  Google Scholar 

  22. Jin ZH, Josserand V, Foillard S et al (2007) In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Mol Cancer 12:41–49

    Article  Google Scholar 

  23. Wu Y, Cai W, Chen X (2006) Near-infrared fluorescence imaging of tumor integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 8:226–236

    Article  PubMed  Google Scholar 

  24. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 64:8009–8014

    Article  CAS  PubMed  Google Scholar 

  25. Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug Chem 16:1433–1441

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Ke S, Wu Q et al (2004) Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts. Mol Imaging 3:343–351

    Article  CAS  PubMed  Google Scholar 

  27. Hsu AR, Hou LC, Veeravagu A, Greve JM, Vogel H, Tse V, Chen X (2006) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Mol Imaging Biol 8:315–323

    Article  PubMed  Google Scholar 

  28. Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870

    Article  CAS  PubMed  Google Scholar 

  29. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  CAS  PubMed  Google Scholar 

  30. Graves EE, Ripoll J, Weissleder R, Ntziachristos VA (2003) Submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys 30:901–911

    Article  CAS  PubMed  Google Scholar 

  31. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336

    Article  CAS  PubMed  Google Scholar 

  32. Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence of tumor vascular volume in mice. Radiology 242:751–758

    Article  PubMed  Google Scholar 

  33. Nahrendorf M, Sosnovik DE, Waterman P et al (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218–1225

    Article  CAS  PubMed  Google Scholar 

  34. Kos J, Lah TT (1998) Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer. Oncol Rep 5:1349–1361

    CAS  PubMed  Google Scholar 

  35. Coleman PJ, Brashear KM, Askew BC et al (2004) Nonpeptide αvβ3 Antagonists. Part11: discovery and preclinical evaluation of potent αvβ3 antagonists for the prevention and treatment of osteoporosis. J Med Chem 47:4829–4837

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Breslin MJ, Coleman PJ et al (2004) Non-peptide αvβ3 antagonists. Part 7: 3-Substituted tetrahydro-[1,8]naphthyridine derivatives. Bioorg Med Chem Lett 14:1049–1052

    Article  CAS  PubMed  Google Scholar 

  37. Simon KO, Nutt EM, Abraham DG, Rodan GA, Duong LT (1997) The alphavbeta3 integrin regulates alpha5beta1-mediated cell migration toward fibronectin. J Biol Chem 272:29380–29389

    Article  CAS  PubMed  Google Scholar 

  38. Landegren U (1984) Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface. antigens. J. Immunol. Methods 67:379–388

    Article  CAS  PubMed  Google Scholar 

  39. Rust WL, Carper SW, Plopper GE (2002) The promise of integrins as effective targets for anticancer agents. J Biomed Biotech 2:124–130

    Article  CAS  Google Scholar 

  40. Reardon DA, Fink KL, Mikkelsen T et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Onc 26:5610–5617

    Article  CAS  Google Scholar 

  41. Burnett CA, Xie J, Quijano J et al (2005) Synthesis, in vitro, and in vivo characterization of an integrin alpha(v)beta(3)-targeted molecular probe for optical imaging of tumor. Bioorg Med Chem 13:3763–3771

    Article  CAS  PubMed  Google Scholar 

  42. Achilefu S, Bloch S, Markiewicz MA et al (2005) Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad Sci USA 102:7976–7981

    Article  CAS  PubMed  Google Scholar 

  43. Aina OH, Marik J, Gandour-Edwards R, Lam KS (2005) Near-infrared optical imaging of ovarian cancer xenografts with novel alpha 3-integrin binding peptide “OA02”. Mol Imaging 4:439–447

    PubMed  Google Scholar 

  44. Li C, Wang W, Wu Q et al (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 33:349–358

    Article  CAS  PubMed  Google Scholar 

  45. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

    Article  CAS  PubMed  Google Scholar 

  46. Montet X, Funovics M, Montet-Abou K et al (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49:6087–6093

    Article  CAS  PubMed  Google Scholar 

  47. Takagi J, Petre BM, Walz T, Springer TA (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–611

    Article  CAS  PubMed  Google Scholar 

  48. Adair BD, Xiong J-P, Maddock C, Goodman SL, Arnaout MA, Yeager M (2005) Three-dimensional EM structure of the ectodomain of integrin alphaV-beta3 in a complex with fibronectin. J Cell Biol 168:1109–1118

    Article  CAS  PubMed  Google Scholar 

  49. Xiong JP, Stehle T, Zhang R et al (2002) Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    Article  CAS  PubMed  Google Scholar 

  50. Bednar B, Cunningham ME, McQueney PA et al (1997) Flow cytometric measurement of kinetic and equilibrium binding parameters of arginine-glycine-aspartic acid ligands in binding to glycoprotein IIb/IIIa on platelets. Cytometry 28:58–65

    Article  CAS  PubMed  Google Scholar 

  51. Sloan EK, Pouliot N, Stanley KL et al (2006) Tumor specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8:1–14

    Article  Google Scholar 

  52. Cooper CR, Chay CH, Pienta KJ (2002) The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 4:191–194

    Article  CAS  PubMed  Google Scholar 

  53. Bakewell SJ, Nestor P, Prasad S et al (2003) Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc Natl Acad Sci USA 100:14205–14210

    Article  CAS  PubMed  Google Scholar 

  54. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  55. Presta LG, Chen H, O’Connor SJ et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    CAS  PubMed  Google Scholar 

  56. Sadeghi MM, Krassilnikova S, Zhang J et al (2004) Detection of injury-induced vascular remodeling by targeting activated avb3 integrin in vivo. Circulation 110:84–90

    Article  CAS  PubMed  Google Scholar 

  57. Bednar B, Lin SH, Gaspar R et al (2008) In vivo imaging detection of cathepsin activity and angiogenesis in mouse models of atherosclerosis. Abstract 2051 World Molecular Imaging Congress, Nice, France, September 10–14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Kossodo.

Additional information

This study conclusively establishes for the first time the ability to simultaneously and noninvasively quantify integrin αvβ3 and cathepsin activity using near-infrared fluorescence tomography in vivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kossodo, S., Pickarski, M., Lin, SA. et al. Dual In Vivo Quantification of Integrin-targeted and Protease-activated Agents in Cancer Using Fluorescence Molecular Tomography (FMT). Mol Imaging Biol 12, 488–499 (2010). https://doi.org/10.1007/s11307-009-0279-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0279-z

Key words

Navigation