Skip to main content
Log in

Development and Validation of a Monte Carlo Simulation Tool for Multi-Pinhole SPECT

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In this work, we developed and validated a Monte Carlo simulation (MCS) tool for investigation and evaluation of multi-pinhole (MPH) SPECT imaging.

Procedures

This tool was based on a combination of the SimSET and MCNP codes. Photon attenuation and scatter in the object, as well as penetration and scatter through the collimator detector, are modeled in this tool. It allows accurate and efficient simulation of MPH SPECT with focused pinhole apertures and user-specified photon energy, aperture material, and imaging geometry. The MCS method was validated by comparing the point response function (PRF), detection efficiency (DE), and image profiles obtained from point sources and phantom experiments. A prototype single-pinhole collimator and focused four- and five-pinhole collimators fitted on a small animal imager were used for the experimental validations. We have also compared computational speed among various simulation tools for MPH SPECT, including SimSET-MCNP, MCNP, SimSET-GATE, and GATE for simulating projections of a hot sphere phantom.

Results

We found good agreement between the MCS and experimental results for PRF, DE, and image profiles, indicating the validity of the simulation method. The relative computational speeds for SimSET-MCNP, MCNP, SimSET-GATE, and GATE are 1: 2.73: 3.54: 7.34, respectively, for 120-view simulations. We also demonstrated the application of this MCS tool in small animal imaging by generating a set of low-noise MPH projection data of a 3D digital mouse whole body phantom.

Conclusions

The new method is useful for studying MPH collimator designs, data acquisition protocols, image reconstructions, and compensation techniques. It also has great potential to be applied for modeling the collimator-detector response with penetration and scatter effects for MPH in the quantitative reconstruction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies, Phys Med Biol 50:R45–R61

    Article  CAS  PubMed  Google Scholar 

  2. Schramm N, Wirrwar A, Sonnenberg F, Halling H (2000) Compact high resolution detector for small animal SPECT. IEEE Trans Nucl Sci 47:1163–1167

    Article  Google Scholar 

  3. Jaszczak RJ, Li JY, Wang HL, Zalutsky MR, Coleman RE (1994) Pinhole collimation for ultra-high-resolution, small-field-of-view spect. Phys Med Biol 39:425–437

    Article  CAS  PubMed  Google Scholar 

  4. Weber DA, Ivanovic M, Franceschi D, Strand SE, Erlandsson K, Franceschi M, Atkins HL, Coderre JA, Susskind H, Button T, Ljunggren K (1994) Pinhole spect - an approach to in-vivo high-resolution spect imaging in small laboratory-animals. J Nucl Med 35:342–348

    CAS  PubMed  Google Scholar 

  5. Erlandsson K, Ivanovic M, Strand SE, Sjogren K, Weber DA (1993) High-resolution pinhole spect for small animal imaging. J Nucl Med 34:P9–P9

    Google Scholar 

  6. Levin CS (2005) Small animal PET and SPECT: instrumentation, performance, and applications. Med Phys 32:2096–2096

    Article  Google Scholar 

  7. Vogel RA, Kirch DL, Lefree MT, Rainwater JO, Jensen DP, Steele PP (1979) Tl-201 myocardial perfusion scintigraphy - results of standard and multi-pinhole Tomographic techniques. Am J Cardiol 43:787–793

    Article  CAS  PubMed  Google Scholar 

  8. Lefree MT, Vogel RA, Kirch DL, Steele PP (1981) 7-pinhole Tomography - a technical description. J Nucl Med 22:48–54

    CAS  PubMed  Google Scholar 

  9. Vogel RA, Kirch DL, Lefree MT, Steele PP (1979) Gated blood pool Tomography using the 7 Pinhole anger camera technique. Circulation 60:136–136

    Google Scholar 

  10. Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, Smidt MP (2005) U-SPECT-I: A novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 46:1194–1200

    PubMed  Google Scholar 

  11. Funk T, Despres P, Barber WC, Shah KS, Hasegawa BH (2006) A multipinhole small animal SPECT system with submillimeter spatial resolution, Med Phys 33:1259–1268

    Article  PubMed  Google Scholar 

  12. Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, Nishizawa S, Tamaki N, Shibasaki H, Konishi J (1995) Ultra-high-resolution spect system using 4 Pinhole collimators for small animal studies. J Nucl Med 36:2282–2287

    CAS  PubMed  Google Scholar 

  13. Schramm NU, Engeland U, Ebel G, Schurrat T, Behe M, Behr TM (2002) Multi-pinhole SPECT for small animal research. J Nucl Med 43:223–223

    Google Scholar 

  14. Buvat I, Castiglion I (2002) Monte Carlo simulations in SPET and PET. Q J Nucl Med 46:48–61

    CAS  PubMed  Google Scholar 

  15. Song TY, Choi Y, Chung YH, Jung JH, Choe YS, Lee KH, Kim SE, Kim BT (2003) Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation. IEEE Trans Nucl Sci 50:327–332

    Article  Google Scholar 

  16. Beekman FJ, Kamphuis C, Frey EC (1997) Scatter compensation methods in 3D iterative SPECT reconstruction: A simulation study, Phys Med Biol 42:1619–1632

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan MS, Harrison RL, Vannoy SD (1998) Coherent scatter implementation for SimSET. IEEE Trans Nucl Sci 45:3064–3068

    Article  Google Scholar 

  18. Harrison RL, Haynor DR, Gillispie SB, Vannoy SD, Kaplan MS, Lewellen TK (1993) A public-domain simulation system for emission tomography - photon tracking through heterogeneous attenuation using importance sampling. J Nucl Med 34:P60–P60

    Google Scholar 

  19. Metz CE (1980) The geometric transfer function component for scintillation camera collimators with straight parallel holes. Phys Med Biol 25:1059–1070

    Article  CAS  PubMed  Google Scholar 

  20. Tsui BMW, Gullberg GT (1990) The geometric transfer-function for cone and fan beam collimators. Phys Med Biol 35:81–93

    Article  CAS  PubMed  Google Scholar 

  21. Frey EC, Tsui BMW, Gullberg GT (1998) Improved estimation of the detector response function for converging beam collimators. Phys Med Biol 43:941–950

    Article  CAS  PubMed  Google Scholar 

  22. Forster RA, Godfrey TNK (1985) Mcnp - a general Monte-Carlo code for neutron and photon transport. Lect Notes Phys 240:33–55

    Article  Google Scholar 

  23. Santin G, Strul D, Lazaro D, Simon L, Krieguer M, Martins MV, Breton V, Morel C (2003) GATE: A Geant4-based simulation platform for PET and SPECT integrating movement and time management, IEEE Trans Nucl Sci 50:1516–1521

    Article  Google Scholar 

  24. Chen CL, Wang YC, Lee JJS, Tsui BMW (2008) Integration of SimSET photon history generator in GATE for efficient Monte Carlo simulations of pinhole SPECT. Med Phys 35:3278–3284

    Article  PubMed  Google Scholar 

  25. He X, Frey EC, Links JM, Gilland KL, Segars WP, Tsui BMW (2004) A mathematical observer study for the evaluation and optimization of compensation methods for myocardial SPECT using a phantom population that realistically models patient variability, IEEE Trans Nucl Sci 51:218–224

    Article  Google Scholar 

  26. Farncombe TH, Gifford HC, Narayanan MV, Pretorius PH, Bruyant P, Gennert M, King MA (2002) An optimization of reconstruction parameters and investigation into the impact of photon scatter in Ga-67 SPECT. IEEE Trans Nucl Sci 49:2148–2154

    Article  Google Scholar 

  27. Sankaran S, Frey EC, Gilland KL, Tsui BMW (2002) Optimum compensation method and filter cutoff frequency in myocardial SPECT: a human observer study. J Nucl Med 43:432–438

    PubMed  Google Scholar 

  28. Du Y, Frey EC, Wang WT, Tocharoenchai C, Baird WH, Tsui BMW (2002) Combination of MCNP and SimSET for Monte Carlo simulation of SPECT with medium- and high-energy photons. IEEE Trans Nucl Sci 49:668–674

    Article  Google Scholar 

  29. Qi YJ, Tsui BM, Frey EC, Yoder B (2002) Performance evaluation of compact detectors based on new pixellated NaI(Tl) crystal arrays for high-resolution small animal imaging. J Nucl Med 43:59p–59p

    Google Scholar 

  30. Segars WP, Tsui BMW, Frey EC, Johnson GA, Berr SS (2004) Development of a 4-D digital mouse phantom for molecular imaging research, Mol Imag Biol 6:149–159

    Article  Google Scholar 

  31. Wang YC, Tsui BMW (2007) Pinhole SPECT with different data acquisition geometries: Usefulness of unified projection operators in homogeneous coordinates. IEEE Trans Med Imag 26:298–308

    Article  Google Scholar 

  32. Metz CE, Tsui MW, Beck RN (1974) Theoretical prediction of geometric transfer function for focused collimators. J Nucl Med 15:1078–1083

    CAS  PubMed  Google Scholar 

  33. Metzler SD, Bowsher JE, Greer KL, Jaszczak RJ (2002) Analytic determination of the pinhole collimator’s point-spread function and RMS resolution with penetration, IEEE Trans Med Imag 21:878–887

    Article  CAS  Google Scholar 

  34. Assie K, Breton V, Buvat I, Comtat C, Jan S, Krieguer M, Lazaro D, Morel C, Rey M, Santin G, Simon L, Staelens S, Strul D, Vieira JM, de Walle RV (2004) Monte Carlo simulation in PET and SPECT instrumentation using GATE, Nucl Instrum Methods phys Res, Sect A, Accel Spectrom Detect Assoc Equip 527:180–189

    Article  CAS  Google Scholar 

  35. Rannou FR, Kohli V, Prout DL, Chatziioannou AF (2004) Investigation of OPET performance using GATE, a Geant4-based simulation software, IEEE Trans Nucl Sci 51:2713–2717

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Mr. Si Chen from Division of Medical Imaging Physics at the Johns Hopkins University, and Dr. Chia-Lin Chen from Chung Shan Medical University for their help on the GATE and SimSET-GATE simulations. This work was supported by the US Public Health Service Grant EB001558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta S. P. Mok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mok, G.S.P., Du, Y., Wang, Y. et al. Development and Validation of a Monte Carlo Simulation Tool for Multi-Pinhole SPECT. Mol Imaging Biol 12, 295–304 (2010). https://doi.org/10.1007/s11307-009-0263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0263-7

Key words

Navigation