Skip to main content
Log in

Detection of Visual Activation in the Rat Brain Using 2-deoxy-2-[18F]fluoro-d-glucose and Statistical Parametric Mapping (SPM)

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to assess changes in brain glucose metabolism in rats after visual stimulation.

Materials and methods

We sought to determine whether visual activation in the rat brain could be detected using a small-animal positron emission tomography (PET) scanner and 2-deoxy-2-[18F]fluoro-d-glucose (FDG). Eleven rats were divided into two groups: (a) five animals exposed to ambient light and (b) six animals stimulated by stroboscopic light (10 Hz) with one eye covered. Rats were injected with FDG and, after 45 min of visual stimulation, were sacrificed and scanned for 90 min in a dedicated PET tomograph. Images were reconstructed by a three-dimensional ordered subset expectation maximization algorithm (1.8 mm full width at half maximum). A region-of-interest (ROI) analysis was performed on 14 brain structures drawn on coronal sections. Statistical parametric mapping (SPM) adapted for small animals was also carried out. Additionally, the brains of three rats were sliced into 20-μm sections for autoradiography.

Results

Analysis of ROI data revealed significant differences between groups in the right superior colliculus, right thalamus, and brainstem (p ≤ 0.05). SPM detected the same areas as the ROI approach. Autoradiographs confirmed the existence of hyperactivation in the left superior colliculus and auditory cortex.

Conclusions

To our knowledge, this is the first report that uses FDG-PET and SPM analysis to show changes in rat brain glucose metabolism after a visual stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lund RD, Lund JS (1965) The visual system of the mole Talpa europaea. Exp Neurol 13(3):302–316

    Article  PubMed  Google Scholar 

  2. Lund RD, Lund JS, Wise RP (1974) The organization of the retinal projection to the dorsal lateral geniculate nucleus in pigmented and albino rats. J Comp Neurol 158(4):383–403

    Article  PubMed  Google Scholar 

  3. Guillery RW (1971) An abnormal retinogeniculate projection in the albino ferret (Mustela furo). Brain Res 33(2):482–485

    Article  PubMed  Google Scholar 

  4. Guillery RW (1974) Visual pathways in albinos. Sci Am 230(5):44–54

    Article  PubMed  CAS  Google Scholar 

  5. Guillery RW (1996) Why do albinos and other hypopigmented mutants lack normal binocular vision, and what else is abnormal in their central visual pathways. Eye 10(Pt 2):217–221

    PubMed  Google Scholar 

  6. Klooster J, van der Want JJ, Vrensen G (1983) Retinopretectal projections in albino and pigmented rabbits: an autoradiographic study. Brain Res 288(1–2):1–12

    Article  PubMed  CAS  Google Scholar 

  7. Balkema GW (1988) Elevated dark-adapted thresholds in albino rodents. Invest Ophthalmol Vis Sci 29(4):544–549

    PubMed  CAS  Google Scholar 

  8. Balkema GW, Drager UC (1991) Impaired visual thresholds in hypopigmented animals. Vis Neurosci 6(6):577–585

    PubMed  CAS  Google Scholar 

  9. Balkema GW, MacDonald S (1998) Increased absolute light sensitivity in Himalayan mice with cold-induced ocular pigmentation. Vis Neurosci 15(5):841–849

    Article  PubMed  CAS  Google Scholar 

  10. Herreros de Tejada P, Green DG, Munoz Tedo C (1992) Visual thresholds in albino and pigmented rats. Vis Neurosci 9(3–4):409–414

    PubMed  CAS  Google Scholar 

  11. Munoz Tedo C, Herreros de Tejada P, Green DG (1994) Behavioral estimates of absolute threshold in rat. Vis Neurosci 11(6):1077–1082

    PubMed  CAS  Google Scholar 

  12. Naarendorp F, Sato Y, Cajdric A et al (2001) Absolute and relative sensitivity of the scotopic system of rat: electroretinography and behavior. Vis Neurosci 18(4):641–656

    Article  PubMed  CAS  Google Scholar 

  13. Fitzpatrick DC, Batra R, Stanford TR et al (1997) A neuronal population code for sound localization. Nature 388(6645):871–874

    Article  PubMed  CAS  Google Scholar 

  14. King AJ, Bajo VM, Bizley JK et al (2007) Physiological and behavioral studies of spatial coding in the auditory cortex. Hear Res 229(1–2):106–115

    Article  PubMed  Google Scholar 

  15. Siegel S, Vaquero JJ, Aloj L et al (1999) Initial results from a PET/Planar small animal imaging system. IEEE Trans on Nuclear Sci 46(3):571–575

    Article  Google Scholar 

  16. Herráiz JL, España S, Vaquero JJ et al (2006) FIRST: Fast Iterative Reconstruction Software for (PET) tomography. Phys Med Biol 51:4547–4565

    Article  PubMed  Google Scholar 

  17. Jagoda EM, Vaquero JJ, Seidel J et al (2004) Experiment assessment of mass effects in the rat: implications for small animal PET imaging. Nucl Med Biol 31(6):771–779

    Article  PubMed  CAS  Google Scholar 

  18. Kruguer L, Saporta S, Swanson LW (1995) Photographic atlas of the rat brain: the cell and fiber architecture illustrated in three planes with stereotaxic coordinates. Cambridge University Press, New York, p 299

    Google Scholar 

  19. Rubins DJ, Melega WP, Lacan G et al (2003) Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. Neuroimage 20(4):2100–2118

    Article  PubMed  Google Scholar 

  20. Pascau J, Gispert JD, Michaelides M et al (2008) Automated method for small-animal PET image registration with intrinsic validation. Mol Imaging Biol. doi:10.1007/s11307-008-0166-z

  21. Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004

    Article  PubMed  Google Scholar 

  22. Friston KJ, Holmes AP, Worsley KJ et al (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  23. Dorey SE, Neveu MM, Burton LC et al (2003) The clinical features of albinism and their correlation with visual evoked potentials. Br J Ophthalmol 87(6):767–772

    Article  PubMed  CAS  Google Scholar 

  24. Neveu MM, Jeffery G, Burton LC et al (2003) Age-related changes in the dynamics of human albino visual pathways. Eur J Neurosci 18(7):1939–1949

    Article  PubMed  Google Scholar 

  25. Ilia M, Jeffery G (2000) Retinal cell addition and rod production depend on early stages of ocular melanin synthesis. J Comp Neurol 420(4):437–444

    Article  PubMed  CAS  Google Scholar 

  26. Friston KJ, Frith CD, Liddle PF et al (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11(4):690–699

    PubMed  CAS  Google Scholar 

  27. Turner R, Howseman A, Rees GE et al (1998) Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res 123(1–2):5–12

    Article  PubMed  CAS  Google Scholar 

  28. Ito K, Morrish PK, Rakshi JS et al (1999) Statistical parametric mapping with 18F-dopa PET shows bilaterally reduced striatal and nigral dopaminergic function in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 66(6):754–758

    Article  PubMed  CAS  Google Scholar 

  29. Kiebel SJ, Friston KJ (2004) Statistical parametric mapping for event-related potentials: I. Generic considerations. Neuroimage 22(2):492–502

    Article  PubMed  Google Scholar 

  30. Nguyen PT, Holschneider DP, Maarek JM et al (2004) Statistical parametric mapping applied to an autoradiographic study of cerebral activation during treadmill walking in rats. Neuroimage 23(1):252–259

    Article  PubMed  Google Scholar 

  31. Holschneider DP, Yang J, Sadler TR et al (2006) Mapping cerebral blood flow changes during auditory-cued conditioned fear in the nontethered, nonrestrained rat. 29:1344–1358

  32. Lee JS, Ahn SH, Lee DS et al (2005) Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images. Eur J Nucl Med Mol Imaging 32(6):696–701

    Article  PubMed  CAS  Google Scholar 

  33. Yang J, Sadler TR, Givrad TK et al (2007) Changes in brain functional activation during resting and locomotor states after unilateral nigrostriatal damage in rats. Neuroimage 36(3):755–773

    Article  PubMed  CAS  Google Scholar 

  34. Holschneider DP, Yang J, Guo Y et al (2007) Reorganization of functional brain maps after exercise training: importance of cerebellar–thalamic–cortical pathway. Brain Res 1184:96–107

    Article  PubMed  CAS  Google Scholar 

  35. Cross DJ, Flexman JA, Anzai Y et al (2008) Age-related decrease in axonal transport measured by MR imaging in vivo. Neuroimage 39(3):915–926

    Article  PubMed  Google Scholar 

  36. Easton N, Marshall F, Fone KC et al (2007) Differential effects of the D-and L-isomers of amphetamine on pharmacological MRI BOLD contrast in the rat. Psychopharmacology (Berl) 193(1):11–30

    Article  CAS  Google Scholar 

  37. Easton N, Marshall F, Fone K et al (2007) Atomoxetine produces changes in cortico-basal thalamic loop circuits: assessed by phMRI BOLD contrast. Neuropharmacology 52(3):812–826

    Article  PubMed  CAS  Google Scholar 

  38. Littlewood CL, Jones N, O’Neill MJ et al (2006) Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacology (Berl) 186(1):64–81

    Article  CAS  Google Scholar 

  39. Lowe AS, Williams SC, Symms MR et al (2002) Functional magnetic resonance neuroimaging of drug dependence: naloxone-precipitated morphine withdrawal. Neuroimage 17(2):902–910

    Article  PubMed  Google Scholar 

  40. Schweinhardt P, Fransson P, Olson L et al (2003) A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 129(2):105–113

    Article  PubMed  Google Scholar 

  41. Casteels C, Vermaelen P, Nuyts J et al (2006) Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 47(11):1858–1866

    PubMed  Google Scholar 

  42. van Kuyck K, Casteels C, Vermaelen P et al (2007) Motor-and food-related metabolic cerebral changes in the activity-based rat model for anorexia nervosa: a voxel-based microPET study. Neuroimage 35(1):214–221

    Article  PubMed  Google Scholar 

  43. Toga AW, Collins RC (1981) Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations. J Comp Neurol 199(4):443–464

    Article  PubMed  CAS  Google Scholar 

  44. Soncrant TT, Holloway HW, Stipetic M et al (1988) Cerebral glucose utilization in rats is not altered by hind limb restraint or by femoral artery and vein cannulation. J Cereb Blood Flow Metab 8(5):720–726

    PubMed  CAS  Google Scholar 

  45. Crane AM, Porrino LJ (1989) Adaptation of the quantitative 2-[14C]deoxyglucose method for use in freely moving rats. Brain Res 499(1):87–92

    Article  PubMed  CAS  Google Scholar 

  46. Linden R, Perry VH (1983) Retrograde and anterograde-transneuronal degeneration in the parabigeminal nucleus following tectal lesions in developing rats. J Comp Neurol 218(3):270–281

    Article  PubMed  CAS  Google Scholar 

  47. Cooper RM, Thurlow GA (1991) [2-14C]deoxyglucose uptake in rat visual system during flashing-diffuse and flashing-pattern stimulation over a 6 log range of luminance. Exp Neurol 113(1):79–84

    Article  PubMed  CAS  Google Scholar 

  48. Cooper RM, Allen K (1995) Metabolic activity in rat visual system during exposure to high and low intensities of patterned and diffuse light. Int J Neurosci 81(1–2):27–34

    Article  PubMed  CAS  Google Scholar 

  49. Thompson SK, von Kriegstein K, Deane-Pratt A et al (2006) Representation of interaural time delay in the human auditory midbrain. Nat Neurosci 9(9):1096–1098

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministerio de Ciencia y Tecnología (TEC2004-07052), Ministerio de Sanidad y Consumo (CIBERsam CB07/09/0031 and Plan Nacional sobre Drogas 2007/043), Ministerio de Industria (CDTEAM Project), and Fundación de Investigación Médica Mutua Madrileña. We thank Alexandra de Francisco for her assistance with the PET studies, the Atomic, Molecular, and Nuclear Physics Department of the Universidad Complutense in Madrid for reconstructing the PET images, and the National Institute of Health for facilitating the piPET system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Desco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto-Montenegro, M.L., Vaquero, J.J., Pascau, J. et al. Detection of Visual Activation in the Rat Brain Using 2-deoxy-2-[18F]fluoro-d-glucose and Statistical Parametric Mapping (SPM). Mol Imaging Biol 11, 94–99 (2009). https://doi.org/10.1007/s11307-008-0179-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0179-7

Key words

Navigation