Skip to main content
Log in

Perfluorohexane-loaded Macrophages as a Novel Ultrasound Contrast Agent: A Feasibility Study

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We investigated in vitro the potential of macrophages to act as targeted vehicle for ultrasound molecular imaging.

Procedures

Murine bone marrow-derived macrophages (BMM), incubated for 3 h with different concentrations of perfluorohexane (PFH) emulsions, were monitored by microscopy, flow cytometry, and ultrasound. Effects of PFH loading on BMM adhesion molecule (PSGL-1, VLA-4, Mac-1, LFA-1) expression were analyzed by flow cytometry. Static adhesion of PFH loaded BMM to unstimulated and TNF-α stimulated b.End5 endothelial cells was assessed by microscopy.

Results

Incubation of BMM with PFH emulsions resulted in dose-dependent uptake and increased echogenicity (max. 17 dB). Flow cytometry analyses revealed no down-regulation related to PFH loading of BMM adhesion molecule expression. Endothelial adhesion remained functional, even after 24 h, although PFH loading dose-dependently attenuated static adhesion.

Conclusion

PFH loaded BMM may potentially serve as ultrasound contrast agent for noninvasive detection of atherogenic hotspots in arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  2. Gerszten RE, Lim YC, Ding HT et al (1998) Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: implications for atherogenesis. Circ Res 82:871–878

    PubMed  CAS  Google Scholar 

  3. Huo Y, Hafezi-Moghadam A, Ley K (2000) Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res 87:153–159

    PubMed  CAS  Google Scholar 

  4. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    Article  PubMed  CAS  Google Scholar 

  5. Chan JR, Hyduk SJ, Cybulsky MI (2001) Chemoattractants induce a rapid and transient upregulation of monocyte alpha4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J Exp Med 193:1149–1158

    Article  PubMed  CAS  Google Scholar 

  6. Huang SL, Hamilton AJ, Pozharski E et al (2002) Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. Ultrasound Med Biol 28:339–348

    Article  PubMed  Google Scholar 

  7. Alkan-Onyuksel H, Demos SM, Lanza GM et al (1996) Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci 85:486–490

    Article  PubMed  CAS  Google Scholar 

  8. Klibanov AL (2006) Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 41:354–362

    Article  PubMed  Google Scholar 

  9. Klibanov AL, Hughes MS, Marsh JN et al (1997) Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Suppl 412:113–120

    CAS  Google Scholar 

  10. Lanza GM, Wallace KD, Scott MJ et al (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94:3334–3340

    PubMed  CAS  Google Scholar 

  11. Wickline SA, Hughes M, Ngo FC et al (2002) Blood contrast enhancement with a novel, non-gaseous nanoparticle contrast agent. Acad Radiol 9(Suppl 2):S290–293

    Article  PubMed  Google Scholar 

  12. Smith DJ, Kornbrust ES, Lane TA (1994) Phagocytosis of a fluorescently labeled perflubron emulsion by a human monocyte cell line. Artif Cells Blood Substit Immobil Biotechnol 22:1215–1221

    Article  PubMed  CAS  Google Scholar 

  13. Marsh JN, Hall CS, Wickline SA, Lanza GM (2002) Temperature dependence of acoustic impedance for specific fluorocarbon liquids. J Acoust Soc Am 112:2858–2862

    Article  PubMed  CAS  Google Scholar 

  14. Flaim SF (1994) Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol 22:1043–1054

    Article  PubMed  CAS  Google Scholar 

  15. Peiser L, Gough PJ, Kodama T, Gordon S (2000) Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun 68:1953–1963

    Article  PubMed  CAS  Google Scholar 

  16. Hume DA, Gordon S (1983) Optimal conditions for proliferation of bone marrow-derived mouse macrophages in culture: the roles of CSF-1, serum, Ca2+, and adherence. J Cell Physiol 117:189–194

    Article  PubMed  CAS  Google Scholar 

  17. Dirkx AE, oude Egbrink MG, Castermans K et al (2006) Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J 20:621–630

    Article  PubMed  CAS  Google Scholar 

  18. Hsu YC, Acuna M, Tahara SM, Peng CA (2003) Reduced phagocytosis of colloidal carriers using soluble CD47. Pharm Res 20:1539–1542

    Article  PubMed  CAS  Google Scholar 

  19. Hsu YC, Peng CA (2001) Diminution of phagocytosed perfluorocarbon emulsions using perfluoroalkylated polyethylene glycol surfactant. Biochem Biophys Res Commun 283:776–781

    Article  PubMed  CAS  Google Scholar 

  20. Peng CA, Hsu YC (2001) Fluoroalkylated polyethylene glycol as potential surfactant for perfluorocarbon emulsion. Artif Cells Blood Substit Immobil Biotechnol 29:483–492

    Article  PubMed  CAS  Google Scholar 

  21. Dirkx AE, Oude Egbrink MG, Kuijpers MJ et al (2003) Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63:2322–2329

    PubMed  CAS  Google Scholar 

  22. Rohnelt RK, Hoch G, Reiss Y, Engelhardt B (1997) Immunosurveillance modelled in vitro: naive and memory T cells spontaneously migrate across unstimulated microvascular endothelium. Int Immunol 9:435–450

    Article  PubMed  CAS  Google Scholar 

  23. Gunzer M, Riemann H, Basoglu Y et al (2005) Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood 106:2424–2432

    Article  PubMed  CAS  Google Scholar 

  24. Reiss Y, Engelhardt B (1999) T cell interaction with ICAM-1-deficient endothelium in vitro: transendothelial migration of different T cell populations is mediated by endothelial ICAM-1 and ICAM-2. Int Immunol 11:1527–1539

    Article  PubMed  CAS  Google Scholar 

  25. Reiss Y, Hoch G, Deutsch U, Engelhardt B (1998) T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol 28:3086–3099

    Article  PubMed  CAS  Google Scholar 

  26. Patil VRS, Campbell CJ, Yun YH, Slack SM, Goetz DJ (2001) Particle diameter influences adhesion under flow. Biophys J 80:1733–1743

    Article  Google Scholar 

  27. Rychak JJ, Li B, Acton ST et al (2006) Selectin ligands promote ultrasound contrast agent adhesion under shear flow. Mol Pharm 3:516–524

    Article  PubMed  CAS  Google Scholar 

  28. Rychak JJ, Lindner JR, Ley K, Klibanov AL (2006) Deformable gas-filled microbubbles targeted to P-selectin. J Control Release 114:288–299

    Article  PubMed  CAS  Google Scholar 

  29. Couture O, Cherin E, Foster FS (2007) Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface. Phys Med Biol 52:4189–4204

    Article  PubMed  CAS  Google Scholar 

  30. Dayton PA, Rychak JJ (2007) Molecular ultrasound imaging using microbubble contrast agents. Front Biosci 12:5124–5142

    Article  PubMed  CAS  Google Scholar 

  31. de Jong N, Bouakaz A, Frinking P (2002) Basic acoustic properties of microbubbles. Echocardiography 19:229–240

    Article  PubMed  Google Scholar 

  32. Marsh JN, Partlow KC, Abendschein DR, Scott MJ, Lanza GM, Wickline SA (2007) Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound Med Biol 33:950–958

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by Senter (Ministry of Economic Affairs), grant BSIK03033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold P. G. Hoeks.

Additional information

Liselotte M. Kornmann and Daniëlle M. J. Curfs: Both authors contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornmann, L.M., Curfs, D.M.J., Hermeling, E. et al. Perfluorohexane-loaded Macrophages as a Novel Ultrasound Contrast Agent: A Feasibility Study. Mol Imaging Biol 10, 264–270 (2008). https://doi.org/10.1007/s11307-008-0146-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0146-3

Key words

Navigation