Skip to main content
Log in

Fusion of Gaussia Luciferase to an Engineered Anti-carcinoembryonic Antigen (CEA) Antibody for In Vivo Optical Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The bioluminescent protein Gaussia luciferase (GLuc) was fused to an anti-carcinoembryonic antigen (CEA) antibody fragment, the diabody, for in vivo optical tumor imaging. A 15-amino acid N-terminal truncation (GLΔ15) resulted in a brighter protein. Fusions of the anti-CEA diabody to full-length GLuc and GLΔ15 retained high affinity for the antigen, emitted light, and exhibited excellent enzymatic stability. In vivo optical imaging of tumor-bearing mice demonstrated specific targeting of diabody-GLΔ15 to CEA-positive xenografts, with a tumor/background ratio of 3.8 ± 0.4 at four hours after tail-vein injection, compared to antigen-negative tumors at 1.3 ± 0.1 (p = 0.001). MicroPET imaging using 124I-diabody-GLΔ15 demonstrated specific uptake in the CEA-positive tumor (2.6% ID [injected dose]/g) compared to the CEA-negative tumor (0.4% ID/g) at 21 hours. Although further optimization of this fusion protein may be needed to improve in vivo performance, the diabody-GLΔ15 is a promising optical imaging probe for tumor detection in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao H, Doyle TC, Coquoz O, et al. (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210

    Article  PubMed  Google Scholar 

  2. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19(9):391–400

    Article  PubMed  CAS  Google Scholar 

  3. Holliger P, Prospero T, Winter G (1993) Diabodies: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90(14):6444–6448

    Article  PubMed  CAS  Google Scholar 

  4. Wu AM, Williams LE, Zieran L, et al. (1999) Anti-carcinoembryonic antigen (CEA) diabody for rapid tumor targeting and imaging. Tumor Targeting 4:47–58

    CAS  Google Scholar 

  5. Sundaresan G, Yazaki PJ, Shively JE, et al. (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44(12):1962–1969

    PubMed  CAS  Google Scholar 

  6. Lorenz WW, Cormier MJ, O’Kane DJ, et al. (1996) Expression of the Renilla reniformis luciferase gene in mammalian cells. J Biolumin Chemilumin 11(1):31–37

    Article  PubMed  CAS  Google Scholar 

  7. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  PubMed  CAS  Google Scholar 

  8. Shah K, Bureau E, Kim DE, et al. (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57(1):34–41

    Article  PubMed  CAS  Google Scholar 

  9. Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7(1):5–15

    PubMed  CAS  Google Scholar 

  10. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99(1):377–382

    Article  PubMed  CAS  Google Scholar 

  11. Bhaumik S, Lewis XZ, Gambhir SS (2004) Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J Biomed Opt 9(3):578–586

    Article  PubMed  CAS  Google Scholar 

  12. Matthews JC, Hori K, Cormier MJ (1977) Substrate and substrate analogue binding properties of Renilla luciferase. Biochemistry 16(24):5217–5220

    Article  PubMed  CAS  Google Scholar 

  13. Verhaegent M, Christopoulos TK (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74(17):4378–4385

    Article  PubMed  Google Scholar 

  14. Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11(3):435–443

    Article  PubMed  CAS  Google Scholar 

  15. Venisnik KM, Olafsen T, Loening AM, et al. (2006) Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors. Protein Eng Des Sel 19(10):453–460

    Article  PubMed  CAS  Google Scholar 

  16. Takkinen K, Laukkanen ML, Sizmann D, et al. (1991) An active single-chain antibody containing a cellulase linker domain is secreted by Escherichia coli. Protein Eng 4(7):837–841

    Article  PubMed  CAS  Google Scholar 

  17. Yazaki PJ, Shively L, Clark C, et al. (2001) Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J Immunol Methods 253(1–2):195–208

    Article  PubMed  CAS  Google Scholar 

  18. Wu AM, Yazaki PJ, Tsai S, et al. (2000) High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci USA 97(15):8495–8500

    Article  PubMed  CAS  Google Scholar 

  19. Kenanova V, Olafsen T, Crow DM, et al. (2005) Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 65(2):622–631

    PubMed  CAS  Google Scholar 

  20. Chow PL, Rannou FR, Chatziioannou AF (2005) Attenuation correction for small animal PET tomographs. Phys Med Biol 50(8):1837–1850

    Article  PubMed  Google Scholar 

  21. Defrise M, Kinahan PE, Townsend DW, et al. (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16(2):145–158

    Article  PubMed  CAS  Google Scholar 

  22. Kinahan PE, Rogers JG (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 36(1):964–968

    Article  CAS  Google Scholar 

  23. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Molecular Imaging 2(3):131–137

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Arion Chatziioannou, Dr. David Stout, Waldemar Lladno, and Judy Edwards for assistance with the microPET imaging studies. We appreciate the advice and assistance of Vania Kenanova, Karl Bauer, and Felix Bergara during various stages of the work. We thank Dr. Bruce Bryan for providing plasmids and proteins, and also appreciate the insights of Dr. Bruce Bryan, Dr. Byron Ballou, and Dr. Chris Szent-Gyorgi on the repeated sequence and possible signal peptide in the GLuc gene. This work was supported in part by NIH Grants T32 GM 08652 (K.M.V.), P01 CA 43904 (T.O., A.M.W.), R24 CA92865 (S.S.G.), R01 CA082214 (S.S.G.). A.M.W. is a member of the Jonsson Comprehensive Cancer Center (NIH P30 CA 16042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venisnik, K.M., Olafsen, T., Gambhir, S.S. et al. Fusion of Gaussia Luciferase to an Engineered Anti-carcinoembryonic Antigen (CEA) Antibody for In Vivo Optical Imaging. Mol Imaging Biol 9, 267–277 (2007). https://doi.org/10.1007/s11307-007-0101-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0101-8

Key words

Navigation