Skip to main content
Log in

In Vivo Quantitation of Intratumoral Radioisotope Uptake Using Micro-Single Photon Emission Computed Tomography/Computed Tomography

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study was undertaken to determine the ability of micro-single photon emission computed tomography (micro-SPECT)/computed tomography (CT) to accurately quantitate intratumoral radioisotope uptake in vivo and to compare these measurements with planar imaging and micro-SPECT imaging alone.

Procedures

Human pancreatic cancer xenografts were established in 10 mice. Intratumoral radioisotope uptake was achieved via intratumoral injection of an attenuated measles virus vector expressing the NIS gene (MV-NIS). On various days after MV-NIS injection, 123I planar and micro-SPECT/CT imaging was performed. Tumor activity was determined by dose calibrator measurements and region-of-interest (ROI) image analysis. Agreement and reproducibility of tumor activity measurements were assessed by Bland–Altman plots and Lin’s concordance correlation coefficient (CCC).

Results

Intratumoral radioisotope uptake was detected in all mice. Scatterplots demonstrate strong agreement (CCC = 0.93) between micro-SPECT/CT ROI image analysis and dose calibrator tumor activity measurements. The differences between dose calibrator activity measurements and those obtained with ROI image analysis of micro-SPECT alone and planar imaging are less accurate and more variable (CCC = 0.84 and 0.78, respectively).

Conclusions

Micro-SPECT/CT can be used to accurately quantify intratumoral radioisotope uptake in vivo and is more reliable than planar or micro-SPECT imaging alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. King MA, Pretorius PH, Farncombe T, Beekman FJ (2002) Introduction to the physics of molecular imaging with radioactive tracers in small animals. J Cell Biochem Suppl 39:221–230

    Article  PubMed  Google Scholar 

  2. Beekman FJ, van der Have F, Vastenhouw B, et al. (2005) U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 46(7):1194–1200

    PubMed  Google Scholar 

  3. Trotter DEG, Manjeshwar RM, Doss M, et al. (2004) Quantitation of small-animal 124I activity distributions using a clinical PET/SPECT scanner. J Nucl Med 45:1237–1244

    CAS  Google Scholar 

  4. Peñuelas I, Haberkorn U, Yaghoubi S, Gambhir SS (2005) Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging. (Available at: http://www.springerlink.com/media/fckprmyxqhjmme2jqjft/contributions/n/8/0/7/n8076521873270j2_html/fulltext.html. Accessed September 23, 2005)

  5. Metzler SD, Jaszczak RJ, Patil NH, Vemulapalli S, Akabani G, Chin BB (2005) Molecular imaging of small animals with a triple-head SPECT system using pinhole collimation. IEEE Trans Med Imaging 24(7):853–862

    Article  CAS  PubMed  Google Scholar 

  6. Yang D, Han L, Kundra V (2005) Exogenous gene expression in tumors: noninvasive quantification with functional and anatomic imaging in a mouse model. Radiology 235:950–958

    PubMed  Google Scholar 

  7. Tsui BMW (1996) The AAPM/RSNA physics tutorial for residents: physics of SPECT. Radiographics 16:173–183

    CAS  PubMed  Google Scholar 

  8. Ljungberg M, Sjögreen K, Liu X, Frey E, Dewaraja Y, Strand S-E (2002) A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for 131I using Monte Carlo simulation. J Nucl Med 43:1101–1109

    PubMed  Google Scholar 

  9. King MA, Farncombe T (2003) An overview of attenuation and scatter correction of planar and SPECT data for dosimetry studies. Cancer Biother Radiopharm 18(2):181–190

    Article  PubMed  Google Scholar 

  10. Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–R61

    Article  CAS  PubMed  Google Scholar 

  11. Hwang AB, Hasegawa BH (2005) Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 32(9):2799–2804

    Article  PubMed  Google Scholar 

  12. Hasegawa BH, Wong KH, Iwata K, et al. (2002) Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat 1(6):449–458

    PubMed  Google Scholar 

  13. NCRP (1988) National Council on Radiation Protection and Measurements. Quality Assurance for Diagnostic Imaging Equipment. Publication 99. Bethesda, MD

  14. Spitzweg C, Dietz AB, O’Connor MK, et al. (2001) In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 8:1524–1531

    Article  CAS  PubMed  Google Scholar 

  15. Dingli D, Russell SJ, Morris JC (2003) In vivo imaging and tumor therapy with the sodium iodide symporter. J Cell Biochem 90(6):1079–1086

    Article  CAS  PubMed  Google Scholar 

  16. DeNardo GL, Shen S, DeNardo SJ, et al.(1998) Quantification of iodine-131 in tumors using a threshold based on image contrast. Eur J Nucl Med 25:497–502

    Article  CAS  PubMed  Google Scholar 

  17. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    CAS  PubMed  Google Scholar 

  18. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  PubMed  Google Scholar 

  19. Koch W, Radau PE, Hamann C, Tatsch K (2005) Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med 46:1109–1118

    PubMed  Google Scholar 

  20. Fleming JS, Bolt L, Stratford JS, Kemp PM (2004) The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 49:N227–N234

    Article  CAS  PubMed  Google Scholar 

  21. Scarfone C, Jaszczak RJ, Gilland DR, et al. (1999) Quantitative pulmonary single photon emission computed tomography for radiotherapy applications. Med Phys 26(8):1579–1588

    Article  CAS  PubMed  Google Scholar 

  22. Dewaraja Y, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS (2005) Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 46(5):840–849

    CAS  PubMed  Google Scholar 

  23. NRC (2004) U.S. Nuclear Regulatory Commission: Medical use of byproduct material. Code of Federal Regulations. 10 CFR 35. Washington, DC: U.S. Government Printing Office

    Google Scholar 

  24. Mattsson S, Jacobsson L, Johansson L (2003) Internal radionuclide dosimetry: diagnostic and therapeutic nuclear medicine, occupation and environmental exposure. Differences and similarities. Cancer Biother Radiopharm 18(3):423

    Article  Google Scholar 

  25. Lambert B, Van de Wiele C (2005) Treatment of hepatocellular carcinoma by means of radiopharmaceuticals. Eur J Nucl Med Mol Imaging 32:980–989

    Article  CAS  PubMed  Google Scholar 

  26. Imam S (2001) Status of radioimmunotherapy in the new millennium. Cancer Biother Radiopharm 16(3):244

    Article  Google Scholar 

  27. Behr T, Behe M, Sgouros G (2002) Correlation of red marrow radiation dosimetry with myelotoxicity: empirical factors influencing the radiation-induced myelotoxicity of radiolabeled antibodies, fragments and peptides in pre-clinical and clinical settings. Cancer Biother Radiopharm 17(4):446

    Article  Google Scholar 

  28. Knoop BO, Geworski L, Hofmann M, Munz DL, Knapp WH (2002) Use of recovery coefficients as a test of system linearity of response in positron emission tomography (PET). Phys Med Biol 47:1237–1254

    Article  PubMed  Google Scholar 

  29. Ishimori T, Tatsumi M, Wahl RL (2005) Tumor response assessment is more robust with sequential CT scanning than external caliper measurements. Acad Radiol 12:776–781

    Article  PubMed  Google Scholar 

  30. Iwata K, Vandehei T, Zhou H, et al. (2004) Radiotracer quantification with microSPECT-CT: phantom study [Abstract 128]. Mol Imaging 3(3):213

    Google Scholar 

  31. Zhang L, Iwata K, Vandehei T, et al. (2005) Radiotracer quantification with in vivo preclinical microSPECT/CT [abstract 329]. Mol Imaging Biol 7(2):166

    Google Scholar 

  32. Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind J-FH, Wahl RL (2003) Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]Fluoro-2-deoxy-d-glucose. Cancer Res 63:6252–6257

    CAS  PubMed  Google Scholar 

  33. Koch W, Hamann C, Welsch J, Pöpperl G, Radau PE, Tatsch K (2005) Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies? J Nucl Med 46(11):1804–1811

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Cancer Institute (grants K08 CA103859-01A1 and CA 100634-01), the Mayo Clinic SPORE in Pancreatic Cancer (grant P20 CA 102701), the Society of Gastrointestinal Radiology Research Grant Program, and the GE-AUR Radiology Research Academic Fellowship (GERRAF) Program. The authors thank Tracy Decklever for technical and imaging assistance, and doctoral student Dan Mundy for his valuable assistance with phantom experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie K. Carlson MD, MS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, S.K., Classic, K.L., Hadac, E.M. et al. In Vivo Quantitation of Intratumoral Radioisotope Uptake Using Micro-Single Photon Emission Computed Tomography/Computed Tomography. Mol Imaging Biol 8, 324–332 (2006). https://doi.org/10.1007/s11307-006-0058-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-006-0058-z

Key words

Navigation