Skip to main content

Advertisement

Log in

A Computational Positron Emission Tomography Simulation Model for Imaging β-Amyloid in Mice

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to develop a computational simulation model for β-amyloid (Aβ) positron emission tomography (PET) imaging.

Procedures

Model parameters were set to reproduce levels of Aβ within the PDAPP mouse. Pharmacokinetic curves of virtual tracers were computed and a PET detector simulator was configured for a commercially available preclinical PET-imaging system.

Results

We modeled the effects of Aβ therapy and tracer affinity on the ability to differentiate Aβ levels by PET. Varying affinity had a significant effect on the ability to quantitate Aβ. Further, PET tracers for Aβ monomers were more sensitive to the therapeutic reduction in Aβ levels than total brain amyloid. Following therapy, the decrease in total brain Aβ corresponded to the slow rate of change in total amyloid load as expected.

Conclusions

We have developed a first proof-of-concept Aβ-PET simulation model that will be a useful tool in the interpretation of preclinical Aβ imaging data and tracer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. T Farkas S Ferris A Wolf et al. (1982) ArticleTitle18F-2-Deoxy-2-Fluoro-D-glucose as a tracer in the positron emission tomographic study of senile dementia Am J Psychiatry 139 352–353

    Google Scholar 

  2. DF Benson DE Kuhl ME Phelps JL Cummings SY Tsai (1981) ArticleTitlePositron emission computed tomography in the diagnosis of dementia Trans Am Neurol Assoc 106 68–71

    Google Scholar 

  3. V Frouin C Comtat A Reilhac MC Gregoire (2002) ArticleTitleCorrection of partial-volume effect for PET striatal imaging: Fast implementation and study of robustness J Nucl Med 43 1715–1726

    Google Scholar 

  4. V Ibanez P Pietrini GE Alexander et al. (1998) ArticleTitleRegional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease Neurology 50 1585–1593

    Google Scholar 

  5. J Yang SC Huang M Mega et al. (1996) ArticleTitleInvestigation of partial volume correction methods for brain FDG PET studies IEEE Trans Nucl Sci 43 3322–3327 Occurrence Handle10.1109/23.552745

    Article  Google Scholar 

  6. RN Waterhouse (2003) ArticleTitleDetermination of lipophilicity and its use as a predictor of blood–brain barrier penetration of molecular imaging agents Mol Imaging Biol 5 376–389 Occurrence Handle10.1016/j.mibio.2003.09.014

    Article  Google Scholar 

  7. CS Patlak RG Blasberg (1985) ArticleTitleGraphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations J Cereb Blood Flow Metab 5 584–590 Occurrence Handle1:STN:280:BimD3svit10%3D Occurrence Handle4055928

    CAS  PubMed  Google Scholar 

  8. CS Patlak RG Blasberg JD Fenstermacher (1983) ArticleTitleGraphical evaluation of blood-to-brain transfer constants from multiple-time uptake data J Cereb Blood Flow Metab 3 1–7 Occurrence Handle1:STN:280:BiyC3cbjtlI%3D Occurrence Handle6822610

    CAS  PubMed  Google Scholar 

  9. J Logan (2000) ArticleTitleGraphical analysis of PET data applied to reversible and irreversible tracers Nucl Med Biol 27 661–670 Occurrence Handle10.1016/S0969-8051(00)00137-2 Occurrence Handle1:STN:280:DC%2BD3M7htVyltw%3D%3D Occurrence Handle11091109

    Article  CAS  PubMed  Google Scholar 

  10. J Logan JS Fowler ND Volkow et al. (1990) ArticleTitleGraphical analysis of reversible radioligand binding from time–activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects J Cereb Blood Flow Metab 10 740–747

    Google Scholar 

  11. K Shoghi-Jadid GW Small ED Agdeppa et al. (2002) ArticleTitleLocalization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer’s disease Am J Geriatr Psychiatry 10 24–35 Occurrence Handle10.1176/appi.ajgp.10.1.24 Occurrence Handle11790632

    Article  PubMed  Google Scholar 

  12. DM Skovronsky B Zhang MP Kung HF Kung JQ Trojanowski VM Lee (2000) ArticleTitleIn vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease Proc Natl Acad Sci U S A 97 7609–7614 Occurrence Handle10.1073/pnas.97.13.7609

    Article  Google Scholar 

  13. WE Klunk H Engler A Nordberg et al. (2004) ArticleTitleImaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B Ann Neurol 55 306–319 Occurrence Handle10.1002/ana.20009 Occurrence Handle1:CAS:528:DC%2BD2cXisFKntb8%3D Occurrence Handle14991808

    Article  CAS  PubMed  Google Scholar 

  14. N Okamura T Suemoto H Shimadzu et al. (2004) ArticleTitleStyrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain J Neurosci 24 2535–2541 Occurrence Handle10.1523/JNEUROSCI.4456-03.2004

    Article  Google Scholar 

  15. S Minoshima KA Frey DJ Cross DE Kuhl (2004) ArticleTitleNeurochemical imaging of dementias Semin Nucl Med 34 70–82

    Google Scholar 

  16. FJ Beekman C Kamphuis MA King PP Rijk Particlevan MA Viergever (2001) ArticleTitleImprovement of image resolution and quantitative accuracy in clinical single photon emission computed tomography Comput Med Imaging Graph 25 135–146 Occurrence Handle10.1016/S0895-6111(00)00064-1

    Article  Google Scholar 

  17. H Zaidi (1999) ArticleTitleRelevance of accurate Monte Carlo modeling in nuclear medical imaging Med Phys 26 574–608 Occurrence Handle10.1118/1.598559

    Article  Google Scholar 

  18. H Zaidi AH Scheurer C Morel (1999) ArticleTitleAn object-oriented Monte Carlo simulator for 3D cylindrical positron tomographs Comput Methods Programs Biomed 58 133–145 Occurrence Handle10.1016/S0169-2607(98)00078-9

    Article  Google Scholar 

  19. J Peter DR Gilland RJ Jaszczak RE Coleman R Suganuma K Ogawa (1999) ArticleTitleFour-dimensional superquadric-based cardiac phantom for Monte Carlo simulation of radiological imaging systems IEEE Trans Nucl Sci 46 2211–2227 Occurrence Handle10.1109/23.819306

    Article  Google Scholar 

  20. R Suganuma K Ogawa (2000) ArticleTitleEffective description of a 3D object for photon transportation in Monte Carlo simulation IEEE Trans Nucl Sci 47 1024–1029 Occurrence Handle10.1109/23.856542

    Article  Google Scholar 

  21. LT Baxter F Yuan RK Jain (1992) ArticleTitlePharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: Comparison with experimental data Cancer Res 52 5838–5844

    Google Scholar 

  22. M Praxmarer C Sung PM Bungay WW Osdol Particlevan (2001) ArticleTitleComputational models of antibody-based tumor imaging and treatment protocols Ann Biomed Eng 29 340–358 Occurrence Handle10.1114/1.1359453

    Article  Google Scholar 

  23. DL Craft LM Wein DJ Selkoe (2002) ArticleTitleA mathematical model of the impact of novel treatments on the Aβ burden in the Alzheimer’s brain, CSF and plasma Bull Math Biol 64 1011–1031 Occurrence Handle10.1006/bulm.2002.0304

    Article  Google Scholar 

  24. BJ Bacskai GA Hickey J Skoch et al. (2003) ArticleTitleFour-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-β ligand in transgenic mice Proc Natl Acad Sci U S A 100 12462–12467 Occurrence Handle10.1073/pnas.2034101100

    Article  Google Scholar 

  25. F Gonzalez-Lima JD Berndt JE Valla D Games EM Reiman (2001) ArticleTitleReduced corpus callosum, fornix and hippocampus in PDAPP transgenic mouse model of Alzheimer’s disease NeuroReport 12 2375–2379 Occurrence Handle10.1097/00001756-200108080-00018

    Article  Google Scholar 

  26. JM Redwine B Kosofsky RE Jacobs et al. (2003) ArticleTitleDentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: A magnetic resonance microscopy and stereologic analysis Proc Natl Acad Sci U S A 100 1381–1386 Occurrence Handle10.1073/pnas.242746599

    Article  Google Scholar 

  27. J Sijbers (1998) Signal and noise estimation from magnetic resonance images Natuurkunde Universiteit Antwerpen, Antwerpen

    Google Scholar 

  28. RP Brown MD Delp SL Lindstedt LR Rhomberg RP Beliles (1997) ArticleTitlePhysiological parameter values for physiologically based pharmacokinetic models Toxicol Ind Health 13 407–484

    Google Scholar 

  29. M Gibaldi D Perrier (1982) Pharmacokinetics EditionNumber2nd edn. Marcel Dekker New York

    Google Scholar 

  30. A Plenevaux D Weissmann J Aerts et al. (2000) ArticleTitleTissue distribution, autoradiography, and metabolism of 4-(2′-methoxyphenyl)-1-[2′-[N-2′′-pyridinyl)-p-[18F]fluorobenzamido]ethyl]piperazine (p-[18F]MPPF), a new serotonin 5-HT(1A) antagonist for positron emission tomography: An in vivo study in rats J Neurochem 75 803–811 Occurrence Handle10.1046/j.1471-4159.2000.0750803.x

    Article  Google Scholar 

  31. CA Mathis Y Wang DP Holt GF Huang ML Debnath WE Klunk (2003) ArticleTitleSynthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents J Med Chem 46 2740–2754 Occurrence Handle10.1021/jm030026b

    Article  Google Scholar 

  32. TK Lewellen RL Harrison S Vannoy (1998) The SimSET program M Ljungberg SE Strand MA King (Eds) Monte Carlo simulations in nuclear medicine IOP Publishing Bristol 77–92

    Google Scholar 

  33. Shao Y, Manjeshwar RM, Jansen FP, Kumar P (2003) PSM: A PET system modeling capable of generating images with clinically relevant count density. IEEE-MIC M11-191

  34. RM Lewitt G Muehllehner JS Karp (1994) ArticleTitleThree-dimensional reconstruction for PET by multi-slice rebinning and axial image filtering Phys Med Biol 39 321–340 Occurrence Handle10.1088/0031-9155/39/3/002

    Article  Google Scholar 

  35. RB DeMattos KR Bales DJ Cummins SM Paul DM Holtzman (2002) ArticleTitleBrain to plasma amyloid-beta efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease Science 295 2264–2267 Occurrence Handle10.1126/science.1067568 Occurrence Handle1:CAS:528:DC%2BD38XitlGkt7g%3D Occurrence Handle11910111

    Article  CAS  PubMed  Google Scholar 

  36. RB DeMattos KR Bales DJ Cummins JC Dodart SM Paul DM Holtzman (2001) ArticleTitlePeripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease Proc Natl Acad Sci U S A 98 8850–8855 Occurrence Handle10.1073/pnas.151261398 Occurrence Handle1:CAS:528:DC%2BD3MXls1Wiurk%3D Occurrence Handle11438712

    Article  CAS  PubMed  Google Scholar 

  37. RB DeMattos KR Bales M Parsadanian et al. (2002) ArticleTitlePlaque-associated disruption of CSF and plasma amyloid-β (Aβ) equilibrium in a mouse model of Alzheimer’s disease J Neurochem 81 229–236 Occurrence Handle10.1046/j.1471-4159.2002.00889.x

    Article  Google Scholar 

  38. T Wyss-Coray C Lin F Yan et al. (2001) ArticleTitleTGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice Nat Med 7 612–618 Occurrence Handle10.1038/87945

    Article  Google Scholar 

  39. M Citron (2002) ArticleTitleβ-Secretase as a target for the treatment of Alzheimer’s disease J Neurosci Res 70 373–379 Occurrence Handle10.1002/jnr.10393

    Article  Google Scholar 

  40. DM Walsh I Klyubin JV Fadeeva et al. (2002) ArticleTitleNaturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo Nature 416 535–539 Occurrence Handle10.1038/416535a Occurrence Handle1:CAS:528:DC%2BD38XivVOntL8%3D Occurrence Handle11932745

    Article  CAS  PubMed  Google Scholar 

  41. DM Walsh I Klyubin JV Fadeeva MJ Rowan DJ Selkoe (2002) ArticleTitleAmyloid-β oligomers: Their production, toxicity and therapeutic inhibition Biochem Soc Trans 30 552–557 Occurrence Handle10.1042/BST0300552

    Article  Google Scholar 

  42. MP Kung DM Skovronsky C Hou et al. (2003) ArticleTitleDetection of amyloid plaques by radioligands for Aβ40 and Aβ42: Potential imaging agents in Alzheimer’s patients J Mol Neurosci 20 15–24 Occurrence Handle10.1385/JMN:20:1:15

    Article  Google Scholar 

  43. ED Agdeppa V Kepe J Liu et al. (2001) ArticleTitleBinding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease J Neurosci 21 IssueID1–5 RC189

    Google Scholar 

  44. HF Kung CW Lee ZP Zhuang MP Kung C Hou K Plossl (2001) ArticleTitleNovel stilbenes as probes for amyloid plaques J Am Chem Soc 123 12740–12741 Occurrence Handle10.1021/ja0167147

    Article  Google Scholar 

  45. YM Kuo MR Emmerling C Vigo-Pelfrey et al. (1996) ArticleTitleWater-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains J Biol Chem 271 4077–4081 Occurrence Handle10.1074/jbc.271.8.4077

    Article  Google Scholar 

  46. JC Dodart KR Bales KS Gannon et al. (2002) ArticleTitleImmunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model Nat Neurosci 5 452–457

    Google Scholar 

  47. MP Lambert KL Viola BA Chromy et al. (2001) ArticleTitleVaccination with soluble Aβ oligomers generates toxicity-neutralizing antibodies J Neurochem 79 595–605 Occurrence Handle10.1046/j.1471-4159.2001.00592.x

    Article  Google Scholar 

  48. C Hock U Konietzko JR Streffer et al. (2003) ArticleTitleAntibodies against β-amyloid slow cognitive decline in Alzheimer’s disease Neuron 38 547–554 Occurrence Handle10.1016/S0896-6273(03)00294-0

    Article  Google Scholar 

  49. JA Nicoll D Wilkinson C Holmes P Steart H Markham RO Weller (2003) ArticleTitleNeuropathology of human Alzheimer disease after immunization with amyloid-β peptide: A case report Nat Med 9 448–452 Occurrence Handle10.1038/nm840 Occurrence Handle1:CAS:528:DC%2BD3sXisVOmu78%3D Occurrence Handle12640446

    Article  CAS  PubMed  Google Scholar 

  50. C Hock U Konietzko A Papassotiropoulos et al. (2002) ArticleTitleGeneration of antibodies specific for β-amyloid by vaccination of patients with Alzheimer disease Nat Med 8 1270–1275 Occurrence Handle10.1038/nm783 Occurrence Handle1:CAS:528:DC%2BD38XotlWlsr8%3D Occurrence Handle12379846

    Article  CAS  PubMed  Google Scholar 

  51. H Engler G Blomqvist M Bergstrom et al. (2002) ArticleTitleFirst human study with a benzothiazole amyloid-imaging agent in Alzheimer’s disease and control subjects Neurobiol Aging 23 S429

    Google Scholar 

  52. PM Kemp C Holmes SM Hoffmann et al. (2003) ArticleTitleAlzheimer’s disease: Differences in technetium-99 m HMPAO SPECT scan findings between early onset and late onset dementia J Neurol Neurosurg Psychiatry 74 715–719 Occurrence Handle10.1136/jnnp.74.6.715

    Article  Google Scholar 

  53. H Kitano (2002) ArticleTitleComputational systems biology Nature 420 206–210 Occurrence Handle10.1038/nature01254

    Article  Google Scholar 

  54. BD Sarachan MK Simmons P Subramanian JM Temkin (2003) ArticleTitleCombining medical informatics and bioinformatics toward tools for personalized medicine Methods Inf Med 42 111–115

    Google Scholar 

  55. Y Gong L Chang KL Viola et al. (2003) ArticleTitleAlzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss Proc Natl Acad Sci U S A 100 10417–10422 Occurrence Handle10.1073/pnas.1834302100

    Article  Google Scholar 

  56. R Kayed E Head JL Thompson et al. (2003) ArticleTitleCommon structure of soluble amyloid oligomers implies common mechanism of pathogenesis Science 300 486–489 Occurrence Handle10.1126/science.1079469 Occurrence Handle1:CAS:528:DC%2BD3sXivFyms7k%3D Occurrence Handle12702875

    Article  CAS  PubMed  Google Scholar 

  57. R Deane S Yan ParticleDu RK Submamaryan (2003) ArticleTitleRAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain Nat Med 9 907–913 Occurrence Handle10.1038/nm890

    Article  Google Scholar 

  58. R Pluta A Misicka M Barcikowska S Spisacka AW Lipkowski S Januszewski (2000) ArticleTitlePossible reverse transport of beta-amyloid peptide across the blood–brain barrier Acta Neurochir Suppl 76 73–77

    Google Scholar 

  59. BV Zlokovic (1996) ArticleTitleCerebrovascular transport of Alzheimer’s amyloid β and apolipoproteins J and E: Possible anti-amyloidogenic role of the blood–brain barrier Life Sci 59 1483–1497 Occurrence Handle10.1016/0024-3205(96)00310-4 Occurrence Handle1:CAS:528:DyaK28Xmt1Cmt7w%3D Occurrence Handle8890929

    Article  CAS  PubMed  Google Scholar 

  60. JF Poduslo GL Curran B Sanyal DJ Selkoe (1999) ArticleTitleReceptor-mediated transport of human amyloid β-protein 1–40 and 1–42 at the blood–brain barrier Neurobiol Dis 6 190–199 Occurrence Handle10.1006/nbdi.1999.0238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Montalto PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, M.K., Manjeshwar, R., Agdeppa, E.D. et al. A Computational Positron Emission Tomography Simulation Model for Imaging β-Amyloid in Mice. Mol Imaging Biol 7, 69–77 (2005). https://doi.org/10.1007/s11307-005-0952-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0952-9

Key words

Navigation