Skip to main content
Log in

Myeloperoxidase Activity Imaging Using 67Ga Labeled Substrate

  • Original Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study is to assess the feasibility of imaging specific activity of myeloperoxidase (MPO), a leukocyte enzyme with important roles in inflammation and atherosclerosis, by single photon emission computed tomography (SPECT) using a novel 67Ga-labeled radiotracer obtained by conjugating desferrioxamine (DF) and hydroxyindolyl acetic acid in vivo.

Materials and Methods

A reducing substrate of MPO (I) was synthesized by reacting commercially available DF with 2-(5-hydroxy-1H-indol-3-yl) acetic acid in the presence of a coupling agent [dicyclohexyl carbodiimide (DCC)]. The chelating unit was labeled with 67Ga, and its interaction with MPO was characterized using MALDI-TOF and UV–vis. Mice with Matrigel implants containing human MPO were used to model diseased tissues rich in MPO. Three hours after the injection of 67Ga–I, SPECT/computed tomography (CT) imaging was performed on a high-resolution Gamma Medica X-SPECT system. Biodistribution studies were performed six hours after the injection of the radiotracer.

Results

The feasibility of compound I oligomerization in the presence of MPO and MPO-mediated cross-linking with proteins was initially confirmed in vitro. In vivo, a 2.7-fold increase in target-to-muscle ratio could be measured in MPO-containing Matrigel implants in mice. Biodistribution experiments demonstrated a 60% increase of radioactivity in MPO-containing vs. control (contralateral) Matrigel implants.

Conclusion

67Ga–I can be used to image MPO activity in a model system. The accumulation mechanism is based on a differential pharmacokinetics because of the size increase resulting from 67Ga–I interaction with the target enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blasberg RG, Gelovani J (2002) Molecular-genetic imaging: A nuclear medicine-based perspective. Mol Imaging 1:280–300

    Article  PubMed  CAS  Google Scholar 

  2. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  3. Bogdanov A Jr, Weissleder R (2002) In vivo imaging of gene delivery and expression. Trends Biotechnol 20:11S–18S

    Article  Google Scholar 

  4. Rausch PG, Pryzwansky KB, Spitznagel JK (1978) Immunocytochemical identification of azurophilic and specific granule markers in the giant granules of Chediak–Higashi neutrophils. N Engl J Med 298:693–698

    Article  PubMed  CAS  Google Scholar 

  5. Nicholls S, Hazen S (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111

    Article  PubMed  CAS  Google Scholar 

  6. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94:437–444

    PubMed  CAS  Google Scholar 

  7. Nagra RM, Becher B, Tourtellotte WW, et al. (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol 78:97–107

    Article  PubMed  CAS  Google Scholar 

  8. Heuther G, Reimer A, Schmidt F, Schuff-Werner P, Brudny MM (1990) Oxidation of the indole nucleus of 5 hydroxytryptamine and formation of dimers in the presence of peroxidase and H2O2. J Neural Transm Suppl 32:249–257

    PubMed  CAS  Google Scholar 

  9. Heinecke JW, Li W, Francis GA, Goldstein JA (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91:2866–2872

    Article  PubMed  CAS  Google Scholar 

  10. Chen JW, Pham W, Weissleder R, Bogdanov A (2004) Human myeloperoxidase: A potential target for molecular MR imaging in atherosclerosis. J Magn Reson Med 52:1021–1028

    Article  CAS  Google Scholar 

  11. Zhang C, Yang J, Jacobs JD, Jennings LK (2003) Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: Implications for vascular diseases. Am J Physiol, Heart Circ Physiol 285:H2563–H2572

    CAS  Google Scholar 

  12. Bergt C, Pennathur S, Fu X, et al. (2004) The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci USA 101:13032–13037

    Article  PubMed  CAS  Google Scholar 

  13. Hershko CM, Link GM, Konijn AM, Cabantchik ZI (2005) Iron chelation therapy. Curr Hematol Rep 4:110–116

    PubMed  CAS  Google Scholar 

  14. Wag S, Robert JL, Mathias CJ, Green MA, Low PS (1996) Synthesis, purification, and tumor cell uptake of 67Ga–desferrioxamine–folate, a potential radiopharmaceutical for tumor imaging. Bioconjug Chem 7:56–62

    Article  Google Scholar 

  15. Mathias CJ, Lewis MR, Reichert DE, Laforest R, Sharp TL, Lewis JS, Yang, Z-F, Waters DJ, Snyder PW, Low PS, Welch MJ, Green MA (2003) Preparation of 66Ga- and 68Ga-labelled Ga(III)–desferrio-xamine–folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 30:725–731

    Article  PubMed  CAS  Google Scholar 

  16. Reichert DE, Lewis JS, Anderson CJ (1999) Metal complexes as diagnostic tools. Coord Chem Rev 184:3–66

    Article  CAS  Google Scholar 

  17. Anderson CJ, Welch M (1999) Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev 99:2219–2234

    Article  PubMed  CAS  Google Scholar 

  18. Weiner R, Hoffer PB, Thakur ML (1981) Lactoferrin: Its role as a Ga-67-binding protein in polymorphonuclear leukocytes. J Nucl Med 22:32–37

    PubMed  CAS  Google Scholar 

  19. Tsan MF (1985) Mechanism of gallium-67 accumulation in inflammatory lesions. J Nucl Med 26:88–92

    PubMed  CAS  Google Scholar 

  20. Weiner R (1996) The mechanism of 67Ga localization in malignant disease. Nucl Med Biol 23:745–751

    Article  PubMed  CAS  Google Scholar 

  21. Tien M (1999) Myeloperoxidase-catalyzed oxidation of tyrosine. Arch Biochem Biophys 367:61–66

    Article  PubMed  CAS  Google Scholar 

  22. McCormick ML, Gaut JP, Lin TS, Britigan BE, Buettner GR, Heinecke JW (1998) Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase. J Biol Chem 273:32030–32037

    Article  PubMed  CAS  Google Scholar 

  23. Jantschko W, Furtmuller PG, Allegra M, Livrea MA, Jakopitsch C, Regelsberger G, Obinger C (2002) Redox intermediates of plant and mammalian peroxidases: A comparative transient-kinetic study of their reactivity toward indole derivatives. Arch Biochem Biophys 398:12–22

    Article  PubMed  CAS  Google Scholar 

  24. Querol M, Chen J, Weissleder R, Bogdanov A (2005) DTPA-bisamide-based MR sensor agents for peroxidase imaging. Org Lett 7:1719–1722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Partial support for this study was provided by the RSNA Research and Education Foundation (JWC) and the NIH [P50-CA86355, R01-HL078641 (RW), and R01 EB000858 (AB)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Bogdanov Jr.

Additional information

M. Querol and J. W. Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Querol Sans, M., Chen, J.W., Weissleder, R. et al. Myeloperoxidase Activity Imaging Using 67Ga Labeled Substrate. Mol Imaging Biol 7, 403–410 (2005). https://doi.org/10.1007/s11307-005-0020-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0020-5

Key words

Navigation