Skip to main content
Log in

Discovery of novel metabolic signatures for early identification of women at risk of developing gestational hypertension

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Gestational hypertension (GH) is defined as the presence of systolic blood pressure (BP) ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg, measured at least 4 h apart after 20 weeks of gestation. Early identification of women at high-risk of developing GH could contribute significantly towards improved maternal and fetal outcomes.

Objectives

To determine early metabolic biomarkers in women with GH as compared with normotensive women.

Methods

Serum samples were collected from subjects during three stages of their pregnancy: 8–12 weeks, 18–20 weeks and after 28 weeks (< 36 weeks) of gestation and studied using nuclear magnetic resonance (NMR) metabolomics approach. Multivariate and univariate analyses were performed to determine the significantly altered metabolites in GH women.

Results

A total of 10 metabolites, including isoleucine, glutamine, lysine, proline, histidine, phenylalanine, alanine, carnitine, N-acetyl glycoprotein and lactic acid were observed to be significantly downregulated during all pregnancy stages in women with GH as compared with controls. Furthermore, expression of 5 metabolites in the first trimester i.e., phenylalanine [area under the curve (AUC) = 0.745], histidine [AUC = 0.729], proline [AUC = 0.722], lactic acid [AUC = 0.722], and carnitine [AUC = 0.714] exhibited highest potential in discriminating GH from normotensive women.

Conclusion

The present study is the first of its kind to identify significantly altered metabolites that have the potential to discriminate between women at risk of developing GH and normotensive women across three trimesters of pregnancy. This opens up the possibility of exploring these metabolites as potential early predictive markers of GH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

HDP:

Hypertensive disorders of pregnancy

GH:

Gestational hypertension

PIH:

Pregnancy-induced hypertension

ACOG:

American College of Obstetricians and Gynecologists

BP:

Blood pressure

NMR:

Nuclear magnetic resonance

MS:

Mass spectrometry

BMI:

Body mass index

PCA:

Principal component analysis

PLS-DA:

Partial least squares discriminant analysis

OPLS-DA:

Orthogonal partial least squares discriminant analysis

HMDB:

Human metabolome database

MetPA:

Metabolomics pathway analysis

MSEA:

Metabolite set enrichment analysis

VIP:

Variable-importance in projection

ROC:

Receiver operating characteristic

AUC:

Area under the curve

References

  • Ameta, K., Gupta, A., Kumar, S., Sethi, R., Kumar, D., & Mahdi, A. A. (2017). Essential hypertension: A filtered serum based metabolomics study. Scientific Reports, 7(1), 2153. https://doi.org/10.1038/s41598-017-02289-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austdal, M., Tangerås, L. H., Skråstad, R. B., Salvesen, K., Austgulen, R., Iversen, A. C., & Bathen, T. F. (2015). First trimester urine and serum metabolomics for prediction of preeclampsia and gestational hypertension: A prospective screening study. International Journal of Molecular Sciences, 16(9), 21520–21538. https://doi.org/10.3390/ijms160921520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahado-Singh, R. O., Syngelaki, A., Mandal, R., Graham, S. F., Akolekar, R., Han, B., Bjondahl, T. C., Dong, E., Bauer, S., Alpay-Savasan, Z., Turkoglu, O., Ogunyemi, D., Poon, L. C., Wishart, D. S., & Nicolaides, K. H. (2017). Metabolomic determination of pathogenesis of late-onset preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine, 30(6), 658–664. https://doi.org/10.1080/14767058.2016.1185411

    Article  CAS  Google Scholar 

  • Broekhuizen, M., Klein, T., Hitzerd, E., de Rijke, Y. B., Schoenmakers, S., Sedlmayr, P., Danser, A. H. J., Merkus, D., & Reiss, I. K. M. (2020). L-tryptophan–induced vasodilation is enhanced in preeclampsia: Studies on its uptake and metabolism in the human placenta. Hypertension, 76(1), 184–194.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, P., Bhattacharya, A., Dasgupta, S., Ghosh, N., Senpupta, S., Joshi, M., Bhattacharyya, P., & Chaudhury, K. (2021). Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics, 17(10), 94. https://doi.org/10.1007/s11306-021-01845-9

    Article  CAS  PubMed  Google Scholar 

  • Cloarec, O., Dumas, M. E., Trygg, J., Craig, A., Barton, R. H., Lindon, J. C., Nicholson, J. K., & Holmes, E. (2005). Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry, 77(2), 517–526. https://doi.org/10.1021/ac048803i

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta, S., Ghosh, N., Choudhury, P., Joshi, M., Chowdhury, S. R., Bhattacharyya, P., & Chaudhury, K. (2022). NMR metabolomic and microarray-based transcriptomic data integration identifies unique molecular signatures of hypersensitivity pneumonitis. Molecular Omics, 18(2), 101–111. https://doi.org/10.1039/d1mo00209k

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta, S., Das, S. S., Patidar, S., Kajaria, V., Chowdhury, S. R., & Chaudhury, K. (2023a). Identification of common dysregulated genes in COVID-19 and hypersensitivity pneumonitis: A systems biology and machine learning approach. Omics: A Journal of Integrative Biology. https://doi.org/10.1089/omi.2022.0171

    Article  PubMed  Google Scholar 

  • Dasgupta, S., Ghosh, N., Bhattacharyya, P., Roy Chowdhury, S., & Chaudhury, K. (2023b). Metabolomics of asthma, COPD, and asthma-COPD overlap: An overview. Critical Reviews in Clinical Laboratory Sciences, 60(2), 153–170. https://doi.org/10.1080/10408363.2022.2140329

    Article  PubMed  Google Scholar 

  • Durante, W. (2019). The emerging role of L-glutamine in cardiovascular health and disease. Nutrients, 11(9). https://doi.org/10.3390/nu11092092

  • Dutta, M., Singh, B., Joshi, M., Das, D., Subramani, E., Maan, M., Jana, S. K., Sharma, U., Das, S., Dasgupta, S., Ray, C. D., Chakravarty, B., & Chaudhury, K. (2018). Metabolomics reveals perturbations in endometrium and serum of minimal and mild endometriosis. Scientific Reports, 8(1), 6466. https://doi.org/10.1038/s41598-018-23954-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emwas, A.-H. M. (2015). The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods in Molecular Biology (Clifton, N.J.), 1277, 161–193. https://doi.org/10.1007/978-1-4939-2377-9_13

    Article  CAS  PubMed  Google Scholar 

  • Ennis, M. A., Rasmussen, B. F., Lim, K., Ball, R. O., Pencharz, P. B., Courtney-Martin, G., & Elango, R. (2020). Dietary phenylalanine requirements during early and late gestation in healthy pregnant women. The American Journal of Clinical Nutrition, 111(2), 351–359. https://doi.org/10.1093/ajcn/nqz288

    Article  PubMed  Google Scholar 

  • Fardin, P., Manzari, M. B., Petretto, A., Ricciardi, A., & Varesio, L. (2007). Tryptophan metabolism and non-hypoxic induction of hypoxia-inducible factor (HIF). International Congress Series, 1304, 241–249.

    Article  CAS  Google Scholar 

  • Ferranti, E. P., Frediani, J. K., Mitchell, R., Fernandes, J., Li, S., Jones, D. P., Corwin, E., & Dunlop, A. L. (2020). Early pregnancy serum metabolite profiles associated with hypertensive disorders of pregnancy in African American women: A pilot study. Journal of Pregnancy, 2020, 1515321. https://doi.org/10.1155/2020/1515321

  • Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. (2020). Obstetrics and Gynecology, 135(6), e237–e260. https://doi.org/10.1097/AOG.0000000000003891

  • Glew, R. H., Melah, G., El-Nafaty, A. I., Brandt, Y., Morris, D., & VanderJagt, D. J. (2004). Plasma and urinary free amino acid concentrations in preeclamptic women in northern Nigeria. Clinica Chimica Acta; International Journal of Clinical Chemistry, 342(1–2), 179–185. https://doi.org/10.1016/j.cccn.2003.12.028

    Article  CAS  PubMed  Google Scholar 

  • Harville, E. W., Li, Y.-Y., Pan, K., McRitchie, S., Pathmasiri, W., & Sumner, S. (2021). Untargeted analysis of first trimester serum to reveal biomarkers of pregnancy complications: A case–control discovery phase study. Scientific Reports, 11(1), 3468. https://doi.org/10.1038/s41598-021-82804-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda, M., Omori, Y., Minei, S., Oshiyama, T., Shimizu, M., Sanaka, M., Kohama, T., Nakabayashi, M., & Hirata, Y. (1990). Quantitative analysis of serum α1-acid glycoprotein levels in normal and diabetic pregnancy. Diabetes Research and Clinical Practice, 10(2), 147–152. https://doi.org/10.1016/0168-8227(90)90037-T

    Article  CAS  PubMed  Google Scholar 

  • Hsu, C.-N., & Tain, Y.-L. (2020). Amino acids and developmental origins of hypertension. Nutrients, 12(6), 1763. https://doi.org/10.3390/nu12061763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. (2013). Obstetrics and Gynecology, 122(5), 1122–1131. https://doi.org/10.1097/01.AOG.0000437382.03963.88

    Article  Google Scholar 

  • Karna, E., Szoka, L., Huynh, T. Y. L., & Palka, J. A. (2020). Proline-dependent regulation of collagen metabolism. Cellular and Molecular Life Sciences: CMLS, 77(10), 1911–1918. https://doi.org/10.1007/s00018-019-03363-3

    Article  CAS  PubMed  Google Scholar 

  • Kenny, L. C., Broadhurst, D. I., Dunn, W., Brown, M., North, R. A., McCowan, L., Roberts, C., Cooper, G. J. S., Kell, D. B., & Baker, P. N. (2010). Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension (Dallas, Tex.: 1979), 56(4), 741–749. https://doi.org/10.1161/HYPERTENSIONAHA.110.157297

  • Koo, W. W., Krug Wispe, S. K., Succop, P., Champlin, A., Sherman, R., & Berry, H. (1990). Urinary hydroxyproline in infants with and without fractures/rickets. Clinical Chemistry, 36(4), 642–644.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. M., Park, J. S., Han, Y. J., Kim, W., Bang, S. H., Kim, B. J., Park, C. W., & Kim, M. Y. (2020). Elevated alanine aminotransferase in early pregnancy and subsequent development of gestational diabetes and preeclampsia. Journal of Korean Medical Science, 35(26), e198. https://doi.org/10.3346/jkms.2020.35.e198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourenço, A. B., Roque, F. C., Teixeira, M. C., Ascenso, J. R., & Sá-Correia, I. (2013). Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells. PloS One, 8(2), e55439. https://doi.org/10.1371/journal.pone.0055439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odibo, A. O., Goetzinger, K. R., Odibo, L., Cahill, A. G., Macones, G. A., Nelson, D. M., & Dietzen, D. J. (2011). First-trimester prediction of preeclampsia using metabolomic biomarkers: A discovery phase study. Prenatal Diagnosis, 31(10), 990–994. https://doi.org/10.1002/pd.2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P.-É., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49(W1), W388–W396. https://doi.org/10.1093/nar/gkab382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, M., Stephens, T., Lim, K., Ball, R. O., Pencharz, P. B., & Elango, R. (2018). Lysine requirements of healthy pregnant women are higher during late stages of gestation compared to early gestation. The Journal of Nutrition, 148(1), 94–99. https://doi.org/10.1093/jn/nxx034

    Article  PubMed  Google Scholar 

  • Pijnenborg, R., Dixon, G., Robertson, W. B., & Brosens, I. (1980). Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta, 1(1), 3–19. https://doi.org/10.1016/s0143-4004(80)80012-9

    Article  CAS  PubMed  Google Scholar 

  • Raymond, R., & Millhorn, D. (1997). Regulation of tyrosine hydroxylase gene expression during hypoxia: Role of Ca2 + and PKC. Kidney International, 51(2), 536–541. https://doi.org/10.1038/ki.1997.74

    Article  CAS  PubMed  Google Scholar 

  • Regitz-Zagrosek, V., Roos-Hesselink, J. W., Bauersachs, J., Blomström-Lundqvist, C., Cífková, R., De Bonis, M., Iung, B., Johnson, M. R., Kintscher, U., Kranke, P., Lang, I. M., Morais, J., Pieper, P. G., Presbitero, P., Price, S., Rosano, G. M. C., Seeland, U., Simoncini, T., Swan, L., & Warnes, C. A. (2018). 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. European Heart Journal, 39(34), 3165–3241. https://doi.org/10.1093/eurheartj/ehy340

    Article  PubMed  Google Scholar 

  • Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. (2000). American Journal of Obstetrics and Gynecology, 183(1), S1–S22.

    Article  Google Scholar 

  • Roberts JM, August PA, Bakris G, Barton JR, Bernstein IM, D. M. (2013). Hypertension in pregnancy. Obstetrics and Gynecology, 122(5), 1122–1131.

    Article  Google Scholar 

  • Subramani, E., Jothiramajayam, M., Dutta, M., Chakravorty, D., Joshi, M., Srivastava, S., Mukherjee, A., Datta Ray, C., Chakravarty, B. N., & Chaudhury, K. (2016). NMR-based metabonomics for understanding the influence of dormant female genital tuberculosis on metabolism of the human endometrium. Human Reproduction, 31(4), 854–865. https://doi.org/10.1093/humrep/dew003

    Article  CAS  PubMed  Google Scholar 

  • Tan, R., Li, J., Liu, F., Liao, P., Ruiz, M., Dupuis, J., Zhu, L., & Hu, Q. (2020). Phenylalanine induces pulmonary hypertension through calcium-sensing receptor activation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319(6), L1010–L1020.

    Article  CAS  PubMed  Google Scholar 

  • Thiele, I. G. I., Niezen-Koning, K. E., van Gennip, A. H., & Aarnoudse, J. G. (2004). Increased plasma carnitine concentrations in preeclampsia. Obstetrics and Gynecology, 103(5 Pt 1), 876–880. https://doi.org/10.1097/01.AOG.0000125699.60416.03

    Article  CAS  PubMed  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128. https://doi.org/10.1002/cem.695

    Article  CAS  Google Scholar 

  • Veerbeek, J. H. W., Hermes, W., Breimer, A. Y., van Rijn, B. B., Koenen, S. V, Mol, B. W., Franx, A., de Groot, C. J. M., & Koster, M. P. H. (2015). Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension, 65(3), 600–606. https://doi.org/10.1161/HYPERTENSIONAHA.114.04850

    Article  CAS  PubMed  Google Scholar 

  • Vuvor, F., Mohammed, H., Ndanu, T., & Harrison, O. (2017). Effect of lysine supplementation on hypertensive men and women in selected peri-urban community in Ghana. BMC Nutrition, 3(1), 67. https://doi.org/10.1186/s40795-017-0187-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Cheng, C., Yang, X., & Zhang, C. (2021). L-phenylalanine attenuates high salt-induced hypertension in Dahl SS rats through activation of GCH1-BH4. PloS One, 16(4), e0250126. https://doi.org/10.1371/journal.pone.0250126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., Serra-Cayuela, A., Liu, Y., Mandal, R., Neveu, V., Pon, A., Knox, C., Wilson, M., Manach, C., Scalbert, A. (2018). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  CAS  PubMed  Google Scholar 

  • Ying, W., Catov, J. M., & Ouyang, P. (2018). Hypertensive disorders of pregnancy and future maternal cardiovascular risk. Journal of the American Heart Association, 7(17), e009382. https://doi.org/10.1161/JAHA.118.009382

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, A., Sun, H., Yan, G., Wang, P., & Wang, X. (2015). Metabolomics for biomarker discovery: Moving to the clinic. BioMed Research International, 2015, 354671. https://doi.org/10.1155/2015/354671

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by SD, ES, PC, CD and KC. Experimentation and data analysis were performed by SD, ES, IM, AB, DS and MJ. The draft of the manuscript was written by SD and AB and reviewed by PC, CD and KC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Koel Chaudhury.

Ethics declarations

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments. Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, S., Subramani, E., Mitra, I. et al. Discovery of novel metabolic signatures for early identification of women at risk of developing gestational hypertension. Metabolomics 19, 50 (2023). https://doi.org/10.1007/s11306-023-02012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-023-02012-y

Keywords

Navigation