Skip to main content
Log in

The verification of the reliability of a triglyceride–glucose index and its availability as an advanced tool

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

The triglyceride–glucose (TyG) index has been considered as insulin resistance (IR) assessment index. The current study aimed to verify the reliability of the TyG index as an IR assessment marker; the study of plasma fatty acids and body fat composition to determine potential metabolic syndrome (MetS) participants with a body mass index (BMI) of between 25.0 and 29.9 kg/m2.

Methods

The study included 378 overweight participants with a body mass index of between 25.0 and 29.9 kg/m2. They were divided into tertiles according to the homeostasis model assessment of IR (HOMA-IR) or the TyG index. The role of the IR assessment index and the relationship with IR-related diseases and the risk factors using gas chromatograph-mass spectrometry, computed tomography, and dual energy X-ray absorptiometry, was investigated.

Results

It was only in the TyG index tertile that the higher TyG index participants showed considerably higher LDL-cholesterol levels. More markedly, a close relationship was observed between the TyG index and the omega-6 polyunsaturated fatty acids compared with the HOMA-IR. Unlike HOMA-IR, with regard to the risks of developing chronic diseases, the MetS, the third tertile of the TyG index, showed an approximately 33.7 times greater odds ratio (OR) of the MetS occurring, compared with the first tertile of the TyG index.

Conclusions

The TyG index may be considered as an IR assessment index. In addition, the TyG index is an advanced tool that reflects the relevance of pro-inflammation levels and the presence of IR-related chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ailhaud, G., Massiera, F., Weill, P., Legrand, P., Alessandri, J.-M., & Guesnet, P. (2006). Temporal changes in dietary fats: Role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Progress in Lipid Research, 45, 203–236.

    Article  CAS  Google Scholar 

  • Berezina, A., Belyaeva, O., Berkovich, O., Baranova, E., Karonova, T., Bazhenova, E., Brovin, D., Grineva, E., & Shlyakhto, E. (2015). Prevalence, risk factors, and genetic traits in metabolically healthy and unhealthy obese individuals. BioMed Research International. https://doi.org/10.1155/2015/548734

    Article  PubMed  PubMed Central  Google Scholar 

  • Calder, P. C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1851, 469–484.

    CAS  Google Scholar 

  • Can, M., Sancar, E., Harma, M., Guven, B., Mungan, G., & Acikgoz, S. (2011). Inflammatory markers in preeclamptic patients. Clinical Chemistry and Laboratory Medicine, 49, 1469–1472.

    Article  CAS  Google Scholar 

  • Ebbert, J. O., & Jensen, M. D. (2013). Fat depots, free fatty acids, and dyslipidemia. Nutrients, 5, 498–508.

    Article  CAS  Google Scholar 

  • Genco, R. J., Grossi, S. G., Ho, A., Nishimura, F., & Murayama, Y. (2005). A proposed model linking inflammation to obesity, diabetes, and periodontal infections. Journal of Periodontology, 76, 2075–2084.

    Article  Google Scholar 

  • Giacobbe, J., Benoiton, B., Zunszain, P., Pariante, C. M., & Borsini, A. (2020). The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders. Frontiers in Psychiatry, 11, 122.

    Article  Google Scholar 

  • Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin, B. A., Gordon, D. J., Krauss, R. M., Savage, P. J., & Smith, S. C., Jr. (2005). Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation, 112, 2735–2752.

    Article  Google Scholar 

  • Haidet, J., Cifarelli, V., Trucco, M., & Luppi, P. (2009). Anti-inflammatory properties of C-peptide. The Review of Diabetic Studies: RDS, 6, 168.

    Article  Google Scholar 

  • Hosseini, S. M. (2017). Triglyceride–glucose index simulation. Journal of Clinical and Basic Research, 1, 11–16.

    Article  Google Scholar 

  • Innes, J. K., & Calder, P. C. (2018). Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 132, 41–48.

    Article  CAS  Google Scholar 

  • Irace, C., Carallo, C., Scavelli, F., De Franceschi, M., Esposito, T., Tripolino, C., & Gnasso, A. (2013). Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. International Journal of Clinical Practice, 67, 665–672.

    Article  CAS  Google Scholar 

  • Ishihara, T., Yoshida, M., & Arita, M. (2019). Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. International Immunology, 31, 559–567.

    Article  CAS  Google Scholar 

  • Karelis, A. D. (2008). Metabolically healthy but obese individuals. The Lancet, 372, 1281–1283.

    Article  Google Scholar 

  • Katan, M., Deslypere, J., Van Birgelen, A., Penders, M., & Zegwaard, M. (1997). Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. Journal of Lipid Research, 38, 2012–2022.

    Article  CAS  Google Scholar 

  • Livingstone, K., Givens, D., Cockcroft, J., Pickering, J., & Lovegrove, J. (2013). Is fatty acid intake a predictor of arterial stiffness and blood pressure in men? Evidence from the Caerphilly Prospective Study. Nutrition, Metabolism and Cardiovascular Diseases, 23, 1079–1085.

    Article  CAS  Google Scholar 

  • Luppi, P., Kallas, Å., & Wahren, J. (2013). Can C-peptide mediated anti-inflammatory effects retard the development of microvascular complications of type 1 diabetes? Diabetes/Metabolism Research and Reviews, 29, 357–362.

    Article  CAS  Google Scholar 

  • Marceau, P., Biron, S., Hould, F.-S., Marceau, S., Simard, S., Thung, S., & Kral, J. (1999). Liver pathology and the metabolic syndrome X in severe obesity. The Journal of Clinical Endocrinology & Metabolism, 84, 1513–1517.

    Article  CAS  Google Scholar 

  • Mohamed, S. (2014). Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends in Food Science & Technology, 35, 114–128.

    Article  CAS  Google Scholar 

  • Mohammadabadi, F., Vafaiyan, Z., Hosseini, S. M., Aryaie, M., & Eshghinia, S. (2014). Assessment of insulin resistance with two methods: HOMA-IR and TyG index in Iranian obese women. Iranian Journal of Diabetes and Obesity, 6, 23–27.

    Google Scholar 

  • Mohd Nor, N. S., Lee, S., Bacha, F., Tfayli, H., & Arslanian, S. (2016). Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: Comparison with the hyperinsulinemic–euglycemic clamp. Pediatric Diabetes, 17, 458–465.

    Article  CAS  Google Scholar 

  • Mollace, V., Gliozzi, M., Carresi, C., Musolino, V., & Oppedisano, F. (2013). Re-assessing the mechanism of action of n-3 PUFAs. International Journal of Cardiology, 170, S8–S11.

    Article  Google Scholar 

  • Navarro-González, D., Sánchez-Íñigo, L., Fernández-Montero, A., Pastrana-Delgado, J., & Martinez, J. A. (2016). TyG index change is more determinant for forecasting type 2 diabetes onset than weight gain. Medicine, 95, e3646.

    Article  Google Scholar 

  • World Health Organization. (2000) International association for the study of obesity, International Obesity Taskforce. The Asia-Pacific perspective: redefining obesity and its treatment, 15–21.

  • Phillips, D., Caddy, S., Ilic, V., Fielding, B., Frayn, K., Borthwick, A., & Taylor, R. (1996). Intramuscular triglyceride and muscle insulin sensitivity: Evidence for a relationship in nondiabetic subjects. Metabolism, 45, 947–950.

    Article  CAS  Google Scholar 

  • Qin, B., Panickar, K. S., & Anderson, R. A. (2010). Cinnamon: Potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. Journal of Diabetes Science and Technology, 4, 685–693.

    Article  Google Scholar 

  • Ramírez-Vélez, R., Pérez-Sousa, M. Á., González-Ruíz, K., Cano-Gutierrez, C. A., Schmidt-RioValle, J., Correa-Rodríguez, M., Izquierdo, M., Romero-García, J. A., Campos-Rodríguez, A. Y., & Triana-Reina, H. R. (2019). Obesity-and lipid-related parameters in the identification of older adults with a high risk of prediabetes according to the American diabetes association: An analysis of the 2015 health, well-being, and aging study. Nutrients, 11, 2654.

    Article  Google Scholar 

  • Simental-Mendía, L. E., Rodríguez-Morán, M., & Guerrero-Romero, F. (2008). The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metabolic Syndrome and Related Disorders, 6, 299–304.

    Article  Google Scholar 

  • Snel, M., van Diepen, J. A., Stijnen, T., Pijl, H., Romijn, J. A., Meinders, A., Voshol, P., & Jazet, I. M. (2011). Immediate and long-term effects of addition of exercise to a 16-week very low calorie diet on low-grade inflammation in obese, insulin-dependent type 2 diabetic patients. Food and Chemical Toxicology, 49, 3104–3111.

    Article  CAS  Google Scholar 

  • Tinius, R. A., Blankenship, M. M., Furgal, K. E., Cade, W. T., Pearson, K. J., Rowland, N. S., Pearson, R. C., Hoover, D. L., & Maples, J. M. (2020). Metabolic flexibility is impaired in women who are pregnant and overweight/obese and related to insulin resistance and inflammation. Metabolism, 104, 154142.

    Article  CAS  Google Scholar 

  • Van Cauter, E., Mestrez, F., Sturis, J., & Polonsky, K. S. (1992). Estimation of insulin secretion rates from C-peptide levels: Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes, 41, 368–377.

    Article  Google Scholar 

  • Wallace, T. M., Levy, J. C., & Matthews, D. R. (2004). Use and abuse of HOMA modeling. Diabetes Care, 27, 1487–1495.

    Article  Google Scholar 

  • Warensjö, E., Öhrvall, M., & Vessby, B. (2006). Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutrition, Metabolism and Cardiovascular Diseases, 16, 128–136.

    Article  Google Scholar 

  • Wood, K., Lau, A., Mantzioris, E., Gibson, R., Ramsden, C., & Muhlhausler, B. (2014). A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids, 90, 133–138.

    Article  CAS  Google Scholar 

  • Yanni, A. E., Stamataki, N. S., Konstantopoulos, P., Stoupaki, M., Abeliatis, A., Nikolakea, I., Perrea, D., Karathanos, V. T., & Tentolouris, N. (2018). Controlling type-2 diabetes by inclusion of Cr-enriched yeast bread in the daily dietary pattern: A randomized clinical trial. European Journal of Nutrition, 57, 259–267.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.co.kr) for English language editing.

Funding

No funding was provided.

Author information

Authors and Affiliations

Authors

Contributions

SRJ analyzed and visualized the formal data, wrote the original draft, and reviewed and edited the manuscript, conceptualization, data curating, investigation, acquisition, and analyzing of the data. Also, contributed to the conceptualization, project administration, and supervision. JHL contributed to the conceptualization, data curation, interpretation of the data, project administration and supervision. Both authors critically revised the manuscript, read and approved the final manuscript, and agreed to be held fully accountable for the integrity and accuracy of the work.

Corresponding author

Correspondence to Jong Ho Lee.

Ethics declarations

Conflict of interest

The authors have no relevant conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Lee, J.H. The verification of the reliability of a triglyceride–glucose index and its availability as an advanced tool. Metabolomics 17, 97 (2021). https://doi.org/10.1007/s11306-021-01837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-021-01837-9

Keywords

Navigation