Skip to main content
Log in

Glycosphingolipids promote pro-atherogenic pathways in the pathogenesis of hyperglycemia-induced accelerated atherosclerosis

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Three out of four people with diabetes will die of cardiovascular disease. However, the molecular mechanisms by which hyperglycemia promotes atherosclerosis, the major underlying cause of cardiovascular disease, are not clear.

Objectives

Three distinct models of hyperglycemia-associated accelerated atherosclerosis were used to identify commonly altered metabolites and pathways associated with the disease.

Methods

Normoglycemic apolipoprotein-E-deficient mice served as atherosclerotic control. Hyperglycemia was induced by multiple low-dose streptozotocin injections, or by introducing a point-mutation in one copy of insulin-2 gene. Glucosamine-supplemented mice, which experience accelerated atherosclerosis to a similar extent as hyperglycemia-induced models without alterations in glucose or insulin levels, were also included in the analysis. Untargeted plasma metabolomics were used to investigate hyperglycemia-associated accelerated atherosclerosis in three disease models. The effect of specific significantly altered metabolites on pro-atherogenic processes was investigated in cultured human vascular cells.

Results

Hyperglycemic and glucosamine-supplemented mice showed distinct metabolomic profiles compared to controls. Meta-analysis of three disease models revealed 62 similarly altered metabolite features (FDR-adjusted p < 0.05). Identification of shared metabolites revealed alterations in glycerophospholipid and sphingolipid metabolism, and pro-atherogenic processes including inflammation and oxidative stress. Post-multivariate and pathway analyses indicated that the glycosphingolipid pathway is strongly associated with hyperglycemia-induced accelerated atherosclerosis in these atherogenic mouse models. Glycosphingolipids induced oxidative stress and inflammation in cultured human vascular cells.

Conclusion

Glycosphingolipids are strongly associated with hyperglycemia-induced accelerated atherosclerosis in three distinct models. They also promote pro-atherogenic processes in cultured human cells. These results suggest glycosphingolipid pathway may be a potential therapeutic target to block or slow atherogenesis in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bietrix, F., Lombardo, E., Roomen, C. P. A. A., Van Ottenhoff, R., Vos, M., Rensen, P. C. N., et al. (2010). Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 leiden and low-density lipoprotein receptor -/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 931–937.

    Article  PubMed  CAS  Google Scholar 

  • Chalcraft, K. R., & McCarry, B. E. (2013). Tandem LC columns for the simultaneous retention of polar and nonpolar molecules in comprehensive metabolomics analysis. Journal of Separation Science, 36, 3478–3485.

    Article  PubMed  CAS  Google Scholar 

  • Dang, V. T., Beriault, D. R., Deng, A., Shi, Y., & Werstuck, G. H. (2015). Glucosamine-induced ER stress accelerates atherogenesis: A potential link between diabetes and cardiovascular disease. Journal of Molecular and Genetic Medicine, 9, 4.

    Article  CAS  Google Scholar 

  • Dang, V. T., Huang, A., Zhong, L. H., Shi, Y., & Werstuck, G. H. (2016). Comprehensive plasma metabolomic analyses of atherosclerotic progression reveal alterations in glycerophospholipid and sphingolipid metabolism in apolipoprotein E-deficient mice. Scientific Reports, 6, 35037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edsfeldt, A., Dunér, P., Ståhlman, M., Mollet, I. G., Asciutto, G., Grufman, H., et al. (2016). Sphingolipids contribute to human atherosclerotic plaque inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 1132–1140.

    Article  PubMed  CAS  Google Scholar 

  • Falk, E. (2006). Pathogenesis of atherosclerosis. Journal of the American College of Cardiology, 47, C7–C12.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O. (2002). Metabolomics-the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, N. (2012). Metabolomics in diabetes research. Journal of Endocrinology, 215(1), 29–42.

    Article  PubMed  CAS  Google Scholar 

  • Glass, C. K., & Witztum, J. L. (2001). Atherosclerosis: The road ahead review. Cell, 104, 503–516.

    Article  PubMed  CAS  Google Scholar 

  • Goonewardena, S. N., Prevette, L. E., & Desai, A. A. (2010). Metabolomics and atherosclerosis. Current Atherosclerosis Reports, 12, 267–272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The New England Journal of Medicine, 339(4), 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, P., Kawar, B., & Nahas, E., M (2007). Obesity and diabetes in the developing world—A growing challenge. The New England Journal of Medicine, 356(3), 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Juutilainen, A., Lehto, S., Ronnemaa, T., Pyorala, K., & Laakso, M. (2008). Similarity of the impact of type 1 and type 2 diabetes on cardiovascular mortality in middle-aged subjects. Diabetes Care, 31(4), 714–719.

    Article  PubMed  Google Scholar 

  • King, A. J. F. (2012). The use of animal models in diabetes research. British Journal of Pharmacology, 166, 877–894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunjathoor, V. V., Wilson, D. L., & LeBoeuf, R. C. (1996). Increased atherosclerosis in streptozotocin-induced diabetic mice. Journal of Clinical Investigation, 97(7), 1767–1773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (2000). Cardiovascular risk factors clustering with endogenous hyperinsulinaemia predict death from coronary heart disease in patients with Type II diabetes. Diabetologia, 43(2), 148–155.

    Article  PubMed  CAS  Google Scholar 

  • Meikle, P. J., & Summers, S. A. (2017). Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nature Reviews Endocrinology, 13(2), 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Meir, K. S., & Leitersdorf, E. (2004). Atherosclerosis in the apolipoprotein E-deficient mouse a decade of progress. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., & Ross, R. (1993). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis, Thrombosis, and Vascular Biology, 14(1), 133–140.

    Article  Google Scholar 

  • Patterson, C. C., Dahlquist, G. G., Gyürüs, E., Green, A., & Soltész, G. (2009). Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005-20: A multicentre prospective registration study. Lancet, 373(9680), 2027–2033.

    Article  PubMed  Google Scholar 

  • Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: The apogee of the omics trilogy. Nature Reviews: Molecular Cell Biology, 13(4), 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Rauschert, S., Uhl, O., Koletzko, B., Kirchberg, F., Mori, T. A., Huang, R., et al. (2016). Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. Journal of Clinical Endocrinology and Metabolism, 101, 871–879.

    Article  PubMed  CAS  Google Scholar 

  • Reddick, R. L., Zhang, S. H., & Maeda, N. (1994). Atherosclerosis in mice lacking Apo E. Arteriosclerosis and Thrombosis, 14(1), 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 362(6423), 801–809.

    Article  PubMed  CAS  Google Scholar 

  • Seshasai, S. R. K., Kaptoge, S., Thompson, A., Di Angelantonio, E., Gao, P., Sarwar, N., et al. (2011). Diabetes mellitus, fasting glucose, and risk of cause-specific death. The New England Journal of Medicine, 364(9), 829–841.

    Article  CAS  Google Scholar 

  • Shalhoub, J., Sikkel, M. B., Davies, K. J., Vorkas, P., Want, E. J., & Davies, A. H. (2014). Systems biology of human atherosclerosis. Vascular and Endovascular Surgery, 48(1), 5–17.

    Article  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venegas-Pino, D. E., Banko, N., Khan, M. I., Shi, Y., & Werstuck, G. H. (2013). Quantitative analysis and characterization of atherosclerotic lesions in the murine aortic sinus. Journal of Visualized Experiments, 82, 50933.

    Google Scholar 

  • Venegas-Pino, D. E., Wang, P.-W., Stoute, H. K., Singh-Pickersgill, N. A., Hong, B. Y., Khan, M. I., et al. (2015). Sex-specific differences in an ApoE–/–:Ins2+/Akita mouse model of accelerated atherosclerosis. The American Journal of Pathology, 186, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Whitman, S. C. (2004). A practical approach to using mice in atherosclerosis research. The Clinical Biochemist Reviews, 25, 81–93.

    PubMed  PubMed Central  Google Scholar 

  • Wu, K. K., & Huan, Y. (2007). Diabetic atherosclerosis mouse models. Atherosclerosis, 191(2), 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, H., Przybylska, M., Wu, I., Zhang, J., Siegel, C., Komarnitsky, S., et al. (2007). Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes, 56, 1210–1218.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., et al. (2006). Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochimica et Biophysica Acta, 1758, 1864–1884.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Peter Shi for providing the human cell lines for the in vitro experiments and the Centre for Microbial Chemical Biology at McMaster University for access to the Mass Spectrometer. This research was supported by operating grants from the Canadian Institutes of Health Research (MOP62910 and MOP142248) and the Heart and Stroke Foundation of Canada (G-17-0017029). V.T.D. is supported by an International Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

GHW and VTD conceived and designed the study. VTD and AH performed mouse experiments. VTD, LHZ and AD conducted and analyzed histochemistry and in vitro experiments. VTD performed all metabolomic experiments and analyses. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Geoff H. Werstuck.

Ethics declarations

Conflict of interest

Vi Dang, Lexy Zhong, Aric Huang, Arlinda Deng and Geoff Werstuck declare no conflict of interest.

Ethical approval

All animal procedures were pre-approved by, and performed in accordance with, the McMaster University Animal Research Ethics Board and conform with the guidelines of the Canadian Council on Animal Care.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 843 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, V.T., Zhong, L.H., Huang, A. et al. Glycosphingolipids promote pro-atherogenic pathways in the pathogenesis of hyperglycemia-induced accelerated atherosclerosis. Metabolomics 14, 92 (2018). https://doi.org/10.1007/s11306-018-1392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1392-2

Keywords

Navigation