Skip to main content

Advertisement

Log in

Analysis of metabolites and metabolic pathways in breast cancer in a Korean prospective cohort: the Korean Cancer Prevention Study-II

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Since blood is in contact with all tissues in the body and is considered to dynamically reflect the body’s pathophysiological status, serum metabolomics changes are important and have diagnostic value in early cancer detection.

Objectives

In this prospective study, we investigated the application of metabolomics to differentiate subjects with incident breast cancer (BC) from subjects who remained free of cancer during a mean follow-up period of 7 years with the aim of identifying valuable biomarkers for BC.

Methods

Baseline serum samples from 84 female subjects with incident BC (BC group) and 88 cancer-free female subjects (control group) were used. Metabolic alterations associated with BC were investigated via metabolomics analysis of the baseline serum samples using ultra-performance liquid chromatography-linear-trap quadrupole-Orbitrap mass spectrometry.

Results

A total of 57 metabolites were identified through the metabolic analysis. Among them, 20 metabolite levels were significantly higher and 22 metabolite levels were significantly lower in the BC group than in the control group at baseline. Ten metabolic pathways, including amino acid metabolism, arachidonic acid (AA) metabolism, fatty acid metabolism, linoleic acid metabolism, and retinol metabolism, showed significant differences between the BC group and the control group. Logistic regression revealed that the incidence of BC was affected by leucine, AA, prostaglandin (PG)J2, PGE2, and γ-linolenic acid (GLA).

Conclusions

This prospective study showed the clinical relevance of dysregulation of various metabolisms on the incidence of BC. Additionally, leucine, AA, PGJ2, PGE2, and GLA were identified as independent variables affecting the incidence of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Alò, P. L., Visca, P., Trombetta, G., Mangoni, A., Lenti, L., Monaco, S., et al. (1999). Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori, 85, 35–40.

    Article  PubMed  Google Scholar 

  • American Cancer Society. (2015). Cancer facts & figs. 2015. Atlanta, GA: American Cancer Society, Inc.

    Google Scholar 

  • Ananieva, E. A., & Wilkinson, A. C. (2018). Branched-chain amino acid metabolism in cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 21, 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Anzano, M. A., Byers, S. W., Smith, J. M., Peer, C. W., Mullen, L. T., Brown, C. C., et al. (1994). Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Research, 54, 4614–4617.

    PubMed  CAS  Google Scholar 

  • Asiago, V. M., Alvarado, L. Z., Shanaiah, N., Gowda, G. A., Owusu-Sarfo, K., Ballas, R. A., et al. (2010). Early detection of recurrent breast cancer using metabolite profiling. Cancer Research, 70, 8309–8318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bougnoux, P., Giraudeau, B., & Couet, C. (2006). Diet, cancer, and the lipidome. Cancer Epidemiology, Biomarkers & Prevention, 15, 416–421.

    Article  CAS  Google Scholar 

  • Bro, R., Kamstrup-Nielsen, M. H., Engelsen, S. B., Savorani, F., Rasmussen, M. A., Hansen, L., et al. (2015). Forecasting individual breast cancer risk using plasma metabolomics and biocontours. Metabolomics, 11, 1376–1380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Budczies, J., Denkert, C., Müller, B. M., Brockmöller, S. F., Klauschen, F., Györffy, B., et al. (2012). Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue—a GC-TOFMS based metabolomics study. BMC Genomics, 13, 334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chajès, V., Hultén, K., Van Kappel, A. L., Winkvist, A., Kaaks, R., Hallmans, G., et al. (1999). Fatty-acid composition in serum phospholipids and risk of breast cancer: An incident case-control study in Sweden. International Journal of Cancer, 83, 585–590.

    Article  PubMed  Google Scholar 

  • Chen, S., Kong, H., Lu, X., Li, Y., Yin, P., Zeng, Z., et al. (2013). Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry. Analytical Chemistry, 85, 8326–8333.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T., & Li, H. (2017). Fatty acid metabolism and prospects for targeted therapy of cancer. European Journal of Lipid Science and Technology, 119, 1600366.

    Article  CAS  Google Scholar 

  • Choi, Y., Park, Y., Storkson, J. M., Pariza, M. W., & Ntambi, J. M. (2002). Inhibition of stearoyl-CoA desaturase activity by the cis-9,trans-11 isomer and the trans-10,cis-12 isomer of conjugated linoleic acid in MDA-MB-231 and MCF-7 human breast cancer cells. Biochemical Biophysical Research Communications, 294, 785–790.

    Article  PubMed  CAS  Google Scholar 

  • Denkert, C., Bucher, E., Hilvo, M., Salek, R., Orešič, M., Griffin, J., et al. (2012). Metabolomics of human breast cancer: New approaches for tumor typing and biomarker discovery. Genome Medicine, 4, 37.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Greter, J., Lindstedt, S., Seeman, H., & Steen, G. (1980). 3-Hydroxydecanedioic acid and related homologues: Urinary metabolites in ketoacidosis. Clinical Chemistry, 26, 261–265.

    PubMed  CAS  Google Scholar 

  • Hadi, N. I., & Jamal, Q. (2015). “OMIC” tumor markers for breast cancer: A review. Pakistan Journal of Medical Sciences, 31, 1256–1262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanaka, H., Pawelzik, S. C., Johnsen, J. I., Rakonjac, M., Terawaki, K., Rasmuson, A., et al. (2009). Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proceedings of the National Academy of Science of the United States of America, 106, 18757–18762.

    Article  Google Scholar 

  • Harizi, H., Corcuff, J. B., & Gualde, N. (2008). Arachidonic-acid-derived eicosanoids: Roles in biology and immunopathology. Trends in Molecular Medicine, 14, 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, L. J., & Satre, M. A. (2002). Alterations in cellular retinol metabolism contribute to differential retinoid responsiveness in normal human mammary epithelial cells versus breast cancer cells. Breast Cancer Research and Treatment, 72, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Horia, E., & Watkins, B. A. (2005). Comparison of stearidonic acid and alpha-linolenic acid on PGE2 production and COX-2 protein levels in MDA-MB-231 breast cancer cell cultures. The Journal of Nutritional Biochemistry, 16, 184–192.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, D., Scollard, D., Byrne, J., & Levine, E. (1998). Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. Journal of the National Cancer Institute, 90, 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Jee, S. H., Batty, G. D., Jang, Y., Oh, D. J., Oh, B. H., Lee, S. H., et al. (2014). The Korean Heart Study: Rationale, objectives, protocol, and preliminary results for a new prospective cohort study of 430,920 men and women. European Journal of Preventive Cardiology, 21, 1484–1492.

    Article  PubMed  Google Scholar 

  • Jee, S. H., Kim, M., Kim, M., Kang, M., Seo, Y. W., Jung, K. J., et al. (2016). Clinical relevance of glycerophospholipid, sphingomyelin and glutathione metabolism in the pathogenesis of pharyngolaryngeal cancer in smokers: The Korean Cancer Prevention Study-II. Metabolomics, 12, 164.

    Article  CAS  Google Scholar 

  • Jin, S. J., & Tserng, K. Y. (1989). Identification of isomeric unsaturated medium-chain dicarboxylic acids in human urine. Journal of Lipid Research, 30, 1611–1619.

    PubMed  CAS  Google Scholar 

  • Kim, M., Jung, S., Kim, S. Y., Lee, S. H., & Lee, J. H. (2014). Prehypertension-associated elevation in circulating lysophosphatidlycholines, Lp-PLA2 activity, and oxidative stress. PLoS ONE, 9, e96735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, Y. C., & Ntambi, J. M. (1999). Regulation of stearoyl-CoA desaturase genes: Role in cellular metabolism and preadipocyte differentiation. Biochemical Biophysical Research Communications, 266, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Kundu, N., Yang, Q., Dorsey, R., & Fulton, A. M. (2001). Increased cyclooxygenase-2 (cox-2) expression and activity in a murine model of metastatic breast cancer. International Journal of Cancer, 93, 681–686.

    Article  PubMed  CAS  Google Scholar 

  • Kusumoto, K., Kageyama, K., Tanaka, H., Kogawa, H., & Miwa, N. (2004). Enhancement of carcinostatic activity of omega-hydroxy fatty acids by their esterification through increased uptake into tumor cells. Oncology Reports, 11, 857–861.

    PubMed  CAS  Google Scholar 

  • Lee, P. P., Lee, M. T., Darcy, K. M., Shudo, K., & Ip, M. M. (1995). Modulation of normal mammary epithelial cell proliferation, morphogenesis, and functional differentiation by retinoids: A comparison of the retinobenzoic acid derivative RE80 with retinoic acid. Endocrinology, 136, 1707–1717.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Umezu-Goto, M., Murph, M., Lu, Y., Liu, W., Zhang, F., et al. (2009). Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell, 15, 539–550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, X., Cheng, X., Liu, X., He, L., Zhang, W., Wang, Y., et al. (2018). Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery. International Journal of Cancer. https://doi.org/10.1002/ijc.31323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Pei, H., Kaeck, M., & Thompson, H. J. (1997). Gene expression changes associated with chemically induced rat mammary carcinogenesis. Molecular Carcinogenesis, 20, 204–215.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S., & Archer, M. C. (2005). Fatty acid synthase is a potential molecular target for the chemoprevention of breast cancer. Carcinogenesis, 26, 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X., Nie, H., Li, Y., Zhan, C., Liu, X., Shi, X., et al. (2015). Comprehensive characterization and evaluation of hepatocellular carcinoma by LC–MS based serum metabolomics. Metabolomics, 11, 1381–1393.

    Article  CAS  Google Scholar 

  • Maurya, P., Meleady, P., Dowling, P., & Clynes, M. (2007). Proteomic approaches for serum biomarker discovery in cancer. Anticancer Research, 27, 1247–1255.

    PubMed  CAS  Google Scholar 

  • Menendez, J. A., Decker, J. P., & Lupu, R. (2005). In support of fatty acid synthase (FAS) as a metabolic oncogene: Extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. Journal of Cellular Biochemistry, 94, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Moon, R. C. (1994). Vitamin A, retinoids and breast cancer. Advances in Experimental Medicine and Biology, 364, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Moon, R. C., & Constantinou, A. I. (1997). Dietary retinoids and carotenoids in rodent models of mammary tumorigenesis. Breast Cancer Research and Treatment, 46, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, C., Wada, K., Tsuji, M., Hayashi, M., Takeda, N., & Yasuda, K. (2014). Plasma amino acid profiles are associated with biomarkers of breast cancer risk in premenopausal Japanese women. Cancer Causes & Control, 25, 143–149.

    Article  Google Scholar 

  • Nakamura, I., Kimijima, I., Zhang, G. J., Onogi, H., Endo, Y., Suzuki, S., et al. (1999). Fatty acid synthase expression in Japanese breast carcinoma patients. International Journal of Molecular Medicine, 4, 381–387.

    PubMed  CAS  Google Scholar 

  • Ntambi, J. M. (1999). Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. Journal of Lipid Research, 40, 1549–1558.

    PubMed  CAS  Google Scholar 

  • Oakman, C., Tenori, L., Biganzoli, L., Santarpia, L., Cappadona, S., Luchinat, C., et al. (2011). Uncovering the metabolomic fingerprint of breast cancer. The International Journal of Biochemistry & Cell Biology, 43, 1010–1020.

    Article  CAS  Google Scholar 

  • Pala, V., Krogh, V., Muti, P., Chajès, V., Riboli, E., Micheli, A., et al. (2001). Erythrocyte membrane fatty acids and subsequent breast cancer: A prospective Italian study. Journal of the National Cancer Institute, 93, 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Parrett, M., Harris, R., Joarder, F., Ross, M., Clausen, K., & Robertson, F. (1997). Cyclooxygenase-2 gene expression in human breast cancer. International Journal of Oncology, 10, 503–507.

    PubMed  CAS  Google Scholar 

  • Peng, F., Liu, Y., He, C., Kong, Y., Ouyang, Q., Xie, X., et al. (2018). Prediction of platinum-based chemotherapy efficacy in lung cancer based on LC-MS metabolomics approach. Journal of Pharmaceutical and Biomedical Analysis, https://doi.org/10.1016/j.jpba.2018.02.051.

    Article  PubMed  Google Scholar 

  • Pignatelli, M., Sánchez-Rodríguez, J., Santos, A., & Perez-Castillo, A. (2005). 15-deoxy-Delta-12,14-prostaglandin J2 induces programmed cell death of breast cancer cells by a pleiotropic mechanism. Carcinogenesis, 26, 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Poschke, I., Mao, Y., Kiessling, R., & de Boniface, J. (2013). Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. Journal of Translational Medicine, 11, 290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu, Y., Zhou, B., Su, M., Baxter, S., Zheng, X., Zhao, X., et al. (2013). Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients. International Journal of Molecular Sciences, 14, 8047–8061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ristimäki, A., Sivula, A., Lundin, J., Lundin, M., Salminen, T., Haglund, C., et al. (2002). Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Research, 62, 632–635.

    PubMed  Google Scholar 

  • Rolland, P. H., Martin, P. M., Jacquemier, J., Rolland, A. M., & Toga, M. (1980). Prostaglandin in human breast cancer: Evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. Journal of the National Cancer Institute, 64, 1061–1070.

    PubMed  CAS  Google Scholar 

  • Schumacher, M. C., Laven, B., Petersson, F., Cederholm, T., Onelöv, E., Ekman, P., et al. (2013). comparative study of tissue ω-6 and ω-3 polyunsaturated fatty acids (PUFA) in benign and malignant pathologic stage pT2a radical prostatectomy specimens. Urologic Oncology, 31, 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, M. C., Laven, B., Wolk, A., Brendler, C., & Ekman, P. (2007). Do omega-3 dietary fatty acids lower prostate cancer risk? A review of the literature. Current Urology, 1, 2–10.

    Article  CAS  Google Scholar 

  • Seewaldt, V. L., Dietze, E. C., Johnson, B. S., Collins, S. J., & Parker, M. B. (1999). Retinoic acid-mediated G1-S-phase arrest of normal human mammary epithelial cells is independent of the level of p53 protein expression. Cell Growth & Differentiation, 10, 49–59.

    CAS  Google Scholar 

  • Seewaldt, V. L., Kim, J. H., Caldwell, L. E., Johnson, B. S., Swisshelm, K., & Collins, S. J. (1997). All-trans-retinoic acid mediates G1 arrest but not apoptosis of normal human mammary epithelial cells. Cell Growth & Differentiation, 8, 631–641.

    CAS  Google Scholar 

  • Simińska, E., & Koba, M. (2016). Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. Amino Acids, 48, 1339–1345.

    Article  PubMed  CAS  Google Scholar 

  • Skaane, P. (2009). Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: Updated review. Acta Radiologica, 50, 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15, 431–440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Statistics Korea. (2018). Cancer incident cases and incidence rates by site (24 items) and sex. Retrieved February 20, 2018, from http://kosis.kr/eng/statisticsList/statisticsList_01List.jsp?vwcd=MT_ETITLE&parmT abId=M_01_01#SubCont.

  • Vassalle, C., Petrozzi, L., Botto, N., Andreassi, M. G., & Zucchelli, G. C. (2004). Oxidative stress and its association with coronary artery disease and different atherogenic risk factors. Journal of Internal Medicine, 256, 308–315.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization. (2011). International statistical classification of diseases and related health problems 2010 edition. 10th revision. Volume 2 instruction manual. Geneva: WHO Press.

    Google Scholar 

  • Xie, Y., & Meier, K. E. (2004). Lysophospholipase D and its role in LPA production. Cellular Signalling, 16, 975–981.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Zhang, L., Ye, X., Chen, L., Zhang, L., Gao, Y., et al. (2013). Characteristics of fatty acid distribution is associated with colorectal cancer prognosis. Prostaglandins, Leukotrienes and Essential Fatty Acids, 88, 355–360.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by grants from the Korean Health Technology R&D Project, the Ministry of Health & Welfare, Republic of Korea (HI14C2686010116 and HI14C2686); and the Bio-Synergy Research Project of the Ministry of Science ICT through the National Research Foundation, Republic of Korea (NRF-2012M3A9C4048762).

Author information

Authors and Affiliations

Authors

Contributions

YHJ analyzed and interpreted the data and wrote the manuscript. KM and KM analyzed and interpreted the data. KM conducted experiments. JKJ, HS, and JSH contributed to acquisition of the data. JSH and LJH contributed to the conception and designed the study. LJH interpreted the data and wrote the manuscript. All authors critically revised, read, and approved the final manuscript.

Corresponding author

Correspondence to Jong Ho Lee.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 146 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, H.J., Kim, M., Kim, M. et al. Analysis of metabolites and metabolic pathways in breast cancer in a Korean prospective cohort: the Korean Cancer Prevention Study-II. Metabolomics 14, 85 (2018). https://doi.org/10.1007/s11306-018-1382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1382-4

Keywords

Navigation