Skip to main content
Log in

Improved experimental data processing for UHPLC–HRMS/MS lipidomics applied to nonalcoholic fatty liver disease

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Untargeted metabolomics workflows include numerous points where variance and systematic errors can be introduced. Due to the diversity of the lipidome, manual peak picking and quantitation using molecule specific internal standards is unrealistic, and therefore quality peak picking algorithms and further feature processing and normalization algorithms are important. Subsequent normalization, data filtering, statistical analysis, and biological interpretation are simplified when quality data acquisition and feature processing are employed.

Objectives

Metrics for QC are important throughout the workflow. The robust workflow presented here provides techniques to ensure that QC checks are implemented throughout sample preparation, data acquisition, pre-processing, and analysis.

Methods

The untargeted lipidomics workflow includes sample standardization prior to acquisition, blocks of QC standards and blanks run at systematic intervals between randomized blocks of experimental data, blank feature filtering (BFF) to remove features not originating from the sample, and QC analysis of data acquisition and processing.

Results

The workflow was successfully applied to mouse liver samples, which were investigated to discern lipidomic changes throughout the development of nonalcoholic fatty liver disease (NAFLD). The workflow, including a novel filtering method, BFF, allows improved confidence in results and conclusions for lipidomic applications.

Conclusion

Using a mouse model developed for the study of the transition of NAFLD from an early stage known as simple steatosis, to the later stage, nonalcoholic steatohepatitis, in combination with our novel workflow, we have identified phosphatidylcholines, phosphatidylethanolamines, and triacylglycerols that may contribute to disease onset and/or progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BFF:

Blank feature filtering

Cer:

Ceramide

DG:

Diacylglyceride

LC:

Liquid chromatography

MS:

Mass spectrometry

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

QC:

Quality control

RT:

Retention time

SS:

Simple steatosis

TG:

Triacylglyceride

References

  • Arendt, B. M., Ma, D. W., Simons, B., Noureldin, S. A., Therapondos, G., Guindi, M., et al. (2013). Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine to phosphatidylethanolamine. Applied Physiology, Nutrition, and Metabolism, 38(3), 334–340. doi:10.1139/apnm-2012-0261.

    Article  CAS  PubMed  Google Scholar 

  • Bril, F., & Cusi, K. (2016). Nonalcoholic fatty liver disease: The new complication of type 2 diabetes mellitus. Endocrinology and Metabolism Clinics of North America, 45(4), 765–781. doi:10.1016/j.ecl.2016.06.005.

    Article  PubMed  Google Scholar 

  • Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2(4), 171–196. doi:10.1007/s11306-006-0037-z.

    Article  CAS  Google Scholar 

  • Browning, J. D., Szczepaniak, L. S., Dobbins, R., Nuremberg, P., Horton, J. D., Cohen, J. C., et al. (2004). Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology, 40(6), 1387–1395.

    Article  PubMed  Google Scholar 

  • Castro-Perez, J. M., Kamphorst, J., Degroot, J., Lafeber, F., Goshawk, J., Yu, K., et al. (2010). Comprehensive LC–MS E lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients research articles. Journal of Proteome Research, 9, 2377–2389.

    Article  CAS  PubMed  Google Scholar 

  • Chalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K., et al. (2012). The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology, 142(7), 1592–1609. doi:10.1053/j.gastro.2012.04.001.

    Article  PubMed  Google Scholar 

  • Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920. doi:10.1038/nbt.2377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, D., Jenner, A. M., Shui, G., Cheong, W. F., Mitchell, T. W., Nealon, J. R., et al. (2011). Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS ONE, 6(2), e17299. doi:10.1371/journal.pone.0017299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapper, J. R., Hendricks, M. D., Gu, G., Wittmer, C., Dolman, C. S., Herich, J., et al. (2013). Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. American Journal of Physiology Gastrointestinal and Liver Physiology, 305(7), G483–G495. doi:10.1152/ajpgi.00079.2013.

    Article  CAS  PubMed  Google Scholar 

  • De Livera, A. M., Dias, D. A., De Souza, D., Rupasinghe, T., Tull, D. L., Roessner, U., et al. (2012). Normalising and integrating metabolomics data. Analytical Chemistry, 84, 10768–10776

    Article  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083. doi:10.1038/nprot.2011.335.

    Article  CAS  PubMed  Google Scholar 

  • Garrett, R. H., & Grisham, C. M. (2010). The tricarboxylic acid cycle. In L. Lockwood, S. Kiselica, A. Summers, & L. Weber (Eds.), Biochemistry (4th ed.). Boston: Cengage Learning.

    Google Scholar 

  • Gibellini, F., & Smith, T. K. (2010). The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 62(6), 414–428. doi:10.1002/iub.337.

    Article  CAS  PubMed  Google Scholar 

  • Gorden, D. L., Ivanova, P. T., Myers, D. S., McIntyre, J. O., VanSaun, M. N., Wright, J. K., et al. (2011). Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS ONE, 6(8), 1–10. doi:10.1371/journal.pone.0022775.

    Article  Google Scholar 

  • Gorden, D. L., Myers, D. S., Ivanova, P. T., Fahy, E., Maurya, M. R., Gupta, S., et al. (2015). Biomarkers of NAFLD progression: A lipidomics approach to an epidemic. Journal of Lipid Research, 56(3), 722–736. doi:10.1194/jlr.P056002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, R. L., van der Veen, J. N., & Vance, D. E. (2013). Finding the balance: The role of S-adenosylmethionine and phosphatidylcholine metabolism in development of nonalcoholic fatty liver disease. Hepatology (Baltimore, Md.), 58, 1207–1209. doi:10.1002/hep.26499.

    Article  CAS  Google Scholar 

  • Kirwan, J. A., Weber, R. J. M., Broadhurst, D. I., & Viant, M. R. (2014). Direct infusion mass spectrometry metabolomics dataset: A benchmark for data processing and quality control. Scientific Data, 1, 140012. doi:10.1038/sdata.2014.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koelmel, J. P., Kroeger, N. M., Ulmer, C. Z., Bowden, J. A., Patterson, R. E., Cochran, J. A., et al. (2017). LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics, 18, 331. doi:10.1186/s12859-017-1744-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koliaki, C., & Roden, M. (2013). Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. Molecular and Cellular Endocrinology, 379(1–2), 35–42. doi:10.1016/j.mce.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Agellon, L. B., Allen, T. M., Umeda, M., Jewell, L., Mason, A., & Vance, D. E. (2006). The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metabolism, 3(5), 321–331. doi:10.1016/j.cmet.2006.03.007.

    Article  CAS  PubMed  Google Scholar 

  • Martin Bland, J., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327(8476), 307–310. doi:10.1016/S0140-6736(86)90837-8.

    Article  Google Scholar 

  • Nagarajan, P. (2012). Genetically modified mouse models for the study of nonalcoholic fatty liver disease. World Journal of Gastroenterology, 18(11), 1141. doi:10.3748/wjg.v18.i11.1141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson, R. E., Kalavalapalli, S., Williams, C. M., Nautiyal, M., Mathew, J. T., Martinez, J., et al. (2016). Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity. American Journal of Physiology—Endocrinology and Metabolism, 310(7), E484–E494. doi:10.1152/ajpendo.00492.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellicoro, A., Ramachandran, P., Iredale, J. P., & Fallowfield, J. A. (2014). Liver fibrosis and repair: Immune regulation of wound healing in a solid organ. Nature Reviews Immunology, 14(3), 181–194. doi:10.1038/nri3623.

    Article  CAS  PubMed  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395. doi:10.1186/1471-2105-11-395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi, Z., & Voit, E. O. (2016). Strategies for comparing metabolic profiles: Implications for the inference of biochemical mechanisms from metabolomics data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 99, 1–32. doi:10.1109/TCBB.2016.2586065.

    Article  Google Scholar 

  • Redestig, H., Fukushima, A., Stenlund, H., Moritz, T., Arita, M., Saito, K., & Kusano, M. (2009). Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Analytical Chemistry, 81(19), 7974–7980. doi:10.1021/ac901143w.

    Article  CAS  PubMed  Google Scholar 

  • Satapati, S., Sunny, N. E., Kucejova, B., Fu, X., He, T. T., Méndez-Lucas, A., et al. (2012). Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. Journal of Lipid Research, 53(6), 1080–1092. doi:10.1194/jlr.M023382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, L. P., Lorenzi, P. L., Purwaha, P., Yong, V., Hawke, D. H., & Weinstein, J. N. (2014). Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines. Analytical Chemistry, 85(20), 9536–9542. doi:10.1021/ac401559v.

    Article  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. a., et al. (2007). Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. doi:10.1007/s11306-007-0082-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunny, N. E., Bril, F., & Cusi, K. (2016). Mitochondrial adaptation in nonalcoholic fatty liver disease: Novel mechanisms and treatment strategies. Trends in Endocrinology & Metabolism, 28, 1–11. doi:10.1016/j.tem.2016.11.006.

    Google Scholar 

  • Sunny, N. E., Parks, E. J., Browning, J. D., & Burgess, S. C. (2011). Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metabolism, 14(6), 804–810. doi:10.1016/j.cmet.2011.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevaskis, J. L., Griffin, P. S., Wittmer, C., Neuschwander-Tetri, B. A., Brunt, E. M., Dolman, C. S., et al. (2012). Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. American Journal of Physiology Gastrointestinal and Liver Physiology, 302(38), G762–G772. doi:10.1152/ajpgi.00476.2011.

    Article  CAS  PubMed  Google Scholar 

  • Vorkas, P. A., Isaac, G., Anwar, M. A., Davies, A. H., Want, E. J., Nicholson, J. K., & Holmes, E. (2015). Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: Application to cardiovascular disease. Analytical Chemistry, 87(8), 4184–4193. doi:10.1021/ac503775m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1, 92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Miguel Ibarra, Oleksandr Moskalenko, and Justin Richardson for their computer programming expertise. We would also like to thank funding sources including the Southeastern Center for Integrated Metabolomics (NIH grant U24 DK097209), the UF Clinical Translational Science Institute (CTSI NIH Grant UL1 TR000064), and the Eastman Chemical Company Analytical Summer Fellowship.

Funding

This study was funded by NIH grant U24 DK097209, UF Clinical Translational Science Institute (CTSI NIH Grant UL1 TR000064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Garrett.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1052 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, R.E., Kirpich, A.S., Koelmel, J.P. et al. Improved experimental data processing for UHPLC–HRMS/MS lipidomics applied to nonalcoholic fatty liver disease. Metabolomics 13, 142 (2017). https://doi.org/10.1007/s11306-017-1280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1280-1

Keywords

Navigation