Skip to main content

Advertisement

Log in

Translation of exhaled breath volatile analyses to sport and exercise applications

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Exhaled breath gases are becomingly increasingly investigated for use as non-invasive measurements for clinical diagnosis, prognosis and therapeutic monitoring. Exhaled volatile organic compounds (VOCs) in the breath, which make up the exhaled volatilome, offer a rich sample medium that provides both information to external exposures as well as endogenous metabolism. For these reasons, exhaled breath analyses can be extended further beyond disease-based investigations, and used for wider biomarker measurement purposes. The use of a rapid, non-invasive (and potentially non-physically demanding) test in an exercise and/or sporting situation may provide additional information for translation to performance sport, recreational exercise/fitness and clinical exercise health.

Aim of review

This review intends to provide an overview into the initial exploration of exhaled VOC measurements in sport and exercise science, and understand current limitations in knowledge and instrumentation that have restricted these methodologies in becoming common practice.

Key scientific concepts of review

Exhaled VOCs have been applied to sport/exercise investigations with a current emphasis on measurement of chemical exposure during and/or following exercise. This includes the measurement of disinfection by-products from chlorine-disinfected swimming pools, as well as exposure to petrochemicals from combustion engines (e.g. vehicle fumes). However, exhaled VOC measurements have been less employed in the context of performance sport. For example, the application of exhaled VOCs to map biochemical/physiological processes of intense exercise is currently under explored and warrants further study. Nevertheless, there is promise for exhaled VOC testing in the development of rapid/on-line anti-doping screens, with initial steps taken in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggazzotti, G., Fantuzzi, G., Righi, E., & Predieri, G. (1995). Environmental and biological monitoring of chloroform in indoor swimming pools. Journal of Chromatography A, 710(1), 181–190. doi:10.1016/0021-9673(95)00432-M.

    Article  CAS  PubMed  Google Scholar 

  • Amann, A., Costello Bde, L., Miekisch, W., Schubert, J., Buszewski, B., Pleil, J., et al. (2014a). The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. Journal of Breath Research, 8(3), 034001. doi:10.1088/1752-7155/8/3/034001.

    Article  PubMed  Google Scholar 

  • Amann, A., Miekisch, W., Schubert, J., Buszewski, B., Ligor, T., Jezierski, T., et al. (2014b). Analysis of exhaled breath for disease detection. Annual Review of Analytical Chemistry, 7, 455–482. doi:10.1146/annurev-anchem-071213-020043.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, M., Hedman, L., Nordberg, G., Forsberg, B., Eriksson, K., & Ronmark, E. (2015). Swimming pool attendance is related to asthma among atopic school children: A population-based study. Environmental Health: A Global Access Science Source, 14, 37. doi:10.1186/s12940-015-0023-x.

    Article  Google Scholar 

  • Araneda, O. F., Guevara, A. J., Contreras, C., Lagos, N., & Berral, F. J. (2012). Exhaled breath condensate analysis after long distance races. International Journal of Sports Medicine, 33(12), 955–961. doi:10.1055/s-0032-1316314.

    Article  CAS  PubMed  Google Scholar 

  • Araneda, O. F., Urbina-Stagno, R., Tuesta, M., Haichelis, D., Alvear, M., Salazar, M. P., et al. (2014). Increase of pro-oxidants with no evidence of lipid peroxidation in exhaled breath condensate after a 10-km race in non-athletes. Journal of Physiology and Biochemistry, 70(1), 107–115. doi:10.1007/s13105-013-0285-0.

    Article  CAS  PubMed  Google Scholar 

  • Basanta, M., Koimtzis, T., Singh, D., Wilson, I., & Thomas, C. L. (2007). An adaptive breath sampler for use with human subjects with an impaired respiratory function. Analyst, 132(2), 153–163. doi:10.1039/b608608j.

    Article  CAS  PubMed  Google Scholar 

  • Beck, O., Sandqvist, S., Eriksen, P., Franck, J., & Palmskog, G. (2011). Determination of methadone in exhaled breath condensate by liquid chromatography-tandem mass spectrometry. Journal of Analytical Toxicology, 35(3), 129–133. doi:10.1093/anatox/35.3.129.

    Article  CAS  PubMed  Google Scholar 

  • Berchtold, C., Bosilkovska, M., Daali, Y., Walder, B., & Zenobi, R. (2014). Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrometry Reviews, 33(5), 394–413. doi:10.1002/mas.21393.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, A., Carbonnelle, S., de Burbure, C., Michel, O., & Nickmilder, M. (2006). Chlorinated pool attendance, atopy, and the risk of asthma during childhood. Environmental Health Perspectives, 114(10), 1567–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikov, A., Gajdocsi, R., Huszar, R., Szili, B., Lazar, Z., Antus, B., et al. (2010). Exercise increases exhaled breath condensate cysteinyl leukotriene concentration in asthmatic patients. Journal of Asthma, 47(9), 1057–1062. doi:10.1080/02770903.2010.512690.

    Article  CAS  PubMed  Google Scholar 

  • Bikov, A., Galffy, G., Tamasi, L., Bartusek, D., Antus, B., Losonczy, G., et al. (2014). Exhaled breath condensate pH decreases during exercise-induced bronchoconstriction. Respirology, 19(4), 563–569. doi:10.1111/resp.12248.

    Article  PubMed  Google Scholar 

  • Bikov, A., Lazar, Z., Schandl, K., Antus, B. M., Losonczy, G., & Horvath, I. (2011). Exercise changes volatiles in exhaled breath assessed by an electronic nose. Acta Physiologica Hungarica, 98(3), 321–328. doi:10.1556/APhysiol.98.2011.3.9.

    Article  CAS  PubMed  Google Scholar 

  • Bolden, A. L., Kwiatkowski, C. F., & Colborn, T. (2015). New look at BTEX: Are ambient levels a problem? Environmental Science and Technology, 49(9), 5261–5276. doi:10.1021/es505316f.

    Article  CAS  PubMed  Google Scholar 

  • Boots, A. W., van Berkel, J. J., Dallinga, J. W., Smolinska, A., Wouters, E. F., & van Schooten, F. J. (2012). The versatile use of exhaled volatile organic compounds in human health and disease. Journal of Breath Research, 6(2), 027108. doi:10.1088/1752-7155/6/2/027108.

    Article  PubMed  Google Scholar 

  • Bos, L. D., Weda, H., Wang, Y., Knobel, H. H., Nijsen, T. M., Vink, T. J., et al. (2014). Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. European Respiratory Journal, 44(1), 188–197. doi:10.1183/09031936.00005614.

    Article  PubMed  Google Scholar 

  • Caro, J., & Gallego, M. (2008). Alveolar air and urine analyses as biomarkers of exposure to trihalomethanes in an indoor swimming pool. Environmental Science and Technology, 42(13), 5002–5007.

    Article  CAS  PubMed  Google Scholar 

  • Chan, H. H., & Burns, S. F. (2013). Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise. Applied Physiology, Nutrition, and Metabolism, 38(2), 182–187. doi:10.1139/apnm-2012-0136.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Venter, A., & Cooks, R. G. (2006). Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chemical Communications. doi:10.1039/B602614A.

    Google Scholar 

  • Cikach, F. S. Jr., Tonelli, A. R., Barnes, J., Paschke, K., Newman, J., Grove, D., et al. (2014). Breath analysis in pulmonary arterial hypertension. Chest, 145(3), 551–558. doi:10.1378/chest.13-1363.

    Article  PubMed  Google Scholar 

  • Couto, M., Barbosa, C., Silva, D., Rudnitskaya, A., Delgado, L., Moreira, A., et al. (2017). Oxidative stress in asthmatic and non-asthmatic adolescent swimmers—A breathomics approach. Pediatric Allergy and Immunology, 28(5), 452–457. doi:10.1111/pai.12729.

    Article  PubMed  Google Scholar 

  • Davis, M. D., & Hunt, J. (2012). Exhaled breath condensate pH assays. Immunology and Allergy Clinics of North America, 32(3), 377–386. doi: 10.1016/j.iac.2012.06.003.

    Article  PubMed  Google Scholar 

  • Davis, M. D., Montpetit, A., & Hunt, J. (2012). Exhaled breath condensate: An overview. Immunology and Allergy Clinics of North America, 32(3), 363–375. doi:10.1016/j.iac.2012.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lacy Costello, B., Amann, A., Al-Kateb, H., Flynn, C., Filipiak, W., Khalid, T., et al. (2014). A review of the volatiles from the healthy human body. Journal of Breath Research, 8(1), 014001. doi:10.1088/1752-7155/8/1/014001.

    Article  PubMed  Google Scholar 

  • Decombaz, J., Grathwohl, D., Pollien, P., Schmitt, J. A., Borrani, F., & Lecoultre, V. (2013). Effect of short-duration lipid supplementation on fat oxidation during exercise and cycling performance. Applied Physiology, Nutrition, and Metabolism, 38(7), 766–772. doi:10.1139/apnm-2012-0459.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Peralbo, M. A., Calderon Santiago, M., Priego-Capote, F., & Luque de Castro, M. D. (2015). Study of exhaled breath condensate sample preparation for metabolomics analysis by LC-MS/MS in high resolution mode. Talanta, 144, 1360–1369. doi:10.1016/j.talanta.2015.08.010.

    Article  CAS  PubMed  Google Scholar 

  • Hamini, S., Khoubnasabjafari, M., Ansarin, K., Jouyban-Gharamaleki, V., & Jouyban, A. (2017). Chiral separation of methadone in exhaled breath condensate using capillary electrophoresis. Analytical Methods, 9, 2342, doi:10.1039/c7ay00110j.

    Article  Google Scholar 

  • Heaney, L. M., Deighton, K., & Suzuki, T. (2017). Non-targeted metabolomics in sport and exercise science. Journal of Sports Sciences. doi:10.1080/02640414.2017.1305122.

    PubMed  Google Scholar 

  • Heaney, L. M., Ruszkiewicz, D. M., Arthur, K. L., Hadjithekli, A., Aldcroft, C., Lindley, M. R., et al. (2016). Real-time monitoring of exhaled volatiles using atmospheric pressure chemical ionization on a compact mass spectrometer. Bioanalysis, 8(13), 1325–1336. doi:10.4155/bio-2016-0045.

    Article  CAS  PubMed  Google Scholar 

  • Judd, S. J., & Bullock, G. (2003). The fate of chlorine and organic materials in swimming pools. Chemosphere, 51(9), 869–879. doi:10.1016/s0045-6535(03)00156-5.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S., & Paul Thomas, C. L. (2016). How long may a breath sample be stored for at -80 degrees C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax:Carbograph trap adsorbent bed from exhaled breath. Journal of Breath Research, 10(2), 026011. doi:10.1088/1752-7155/10/2/026011.

    Article  CAS  PubMed  Google Scholar 

  • Kazani, S., & Israel, E. (2010). Exhaled breath condensates in asthma: Diagnostic and therapeutic implications. Journal of Breath Research, 4(4), 047001. doi:10.1088/1752-7155/4/4/047001.

    Article  PubMed  Google Scholar 

  • Kharitonov, S. A., & Barnes, P. J. (2004). Effects of corticosteroids on noninvasive biomarkers of inflammation in asthma and chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 1(3), 191–199.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Shim, J., & Lee, S. (2002). Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere, 46(1), 123–130.

    Article  CAS  PubMed  Google Scholar 

  • King, J., Kupferthaler, A., Unterkofler, K., Koc, H., Teschl, S., Teschl, G., et al. (2009). Isoprene and acetone concentration profiles during exercise on an ergometer. Journal of Breath Research, 3(2), 027006. doi:10.1088/1752-7155/3/2/027006.

    Article  CAS  PubMed  Google Scholar 

  • King, J., Unterkofler, K., Teschl, G., Teschl, S., Mochalski, P., Koc, H., et al. (2012). A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds. Journal of Breath Research, 6(1), 016005. doi:10.1088/1752-7155/6/1/016005.

    Article  CAS  PubMed  Google Scholar 

  • Koc, H., King, J., Teschl, G., Unterkofler, K., Teschl, S., Mochalski, P., et al. (2011). The role of mathematical modeling in VOC analysis using isoprene as a prototypic example. Journal of Breath Research, 5(3), 037102. doi:10.1088/1752-7155/5/3/037102.

    Article  CAS  PubMed  Google Scholar 

  • Kuban, P., & Foret, F. (2013). Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Analytica Chimica Acta, 805, 1–18. doi:10.1016/j.aca.2013.07.049.

    Article  CAS  PubMed  Google Scholar 

  • Kuban, P., Kobrin, E. G., & Kaljurand, M. (2012). Capillary electrophoresis—A new tool for ionic analysis of exhaled breath condensate. Journal of Chromatography A, 1267, 239–246. doi:10.1016/j.chroma.2012.06.085.

    Article  CAS  PubMed  Google Scholar 

  • Lawal, O., Ahmed, W. M., Nijsen, T. M. E., Goodacre, R., & Fowler, S. J. (2017). Exhaled breath analysis: A review of ‘breath-taking’ methods for off-line analysis. Metabolomics, 13, 110. doi:10.1007/s11306-017-1241-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindstrom, A. B., Pleil, J. D., & Berkoff, D. C. (1997). Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training. Environmental Health Perspectives, 105(6), 636–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcondes-Braga, F. G., Gutz, I. G. R., Batista, G. L., Saldiva, P. H. N., Ayub-Ferreira, S. M., Issa, V. S., et al. (2012). Exhaled acetone as a new biomaker of heart failure severity. Chest, 142(2), 457–466. doi:10.1378/chest.11-2892.

    Article  CAS  PubMed  Google Scholar 

  • Meier, L., Berchtold, C., Schmid, S., & Zenobi, R. (2012). Extractive electrospray ionization mass spectrometry-enhanced sensitivity using an ion funnel. Analytical Chemistry, 84(4), 2076–2080. doi:10.1021/ac203022x.

    Article  CAS  PubMed  Google Scholar 

  • Miekisch, W., Kischkel, S., Sawacki, A., Liebau, T., Mieth, M., & Schubert, J. K. (2008). Impact of sampling procedures on the results of breath analysis. Journal of Breath Research, 2(2), 026007. doi:10.1088/1752-7155/2/2/026007.

    Article  PubMed  Google Scholar 

  • Miekisch, W., Schubert, J. K., & Noeldge-Schomburg, G. F. (2004). Diagnostic potential of breath analysis—focus on volatile organic compounds. Clinica Chimica Acta, 347(1–2), 25–39. doi:10.1016/j.cccn.2004.04.023.

    Article  CAS  Google Scholar 

  • Mochalski, P., King, J., Unterkofler, K., & Amann, A. (2013). Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. The Analyst, 138(5), 1405–1418. doi:10.1039/c2an36193k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morissette, M. C., Murray, N., Turmel, J., Milot, J., Boulet, L. P., & Bougault, V. (2016). Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers. European Journal of Sport Science, 16(5), 569–576. doi:10.1080/17461391.2015.1063702.

    Article  PubMed  Google Scholar 

  • Nakhleh, M. K., Haick, H., Humbert, M., & Cohen-Kaminsky, S. (2017). Volatolomics of breath as an emerging frontier in pulmonary arterial hypertension. European Respiratory Journal, 49(2), 1601897. doi:10.1183/13993003.01897-2016.

    Article  PubMed  Google Scholar 

  • Ohlsson, J., Ralph, D. D., Mandelkorn, M. A., Babb, A. L., & Hlastala, M. P. (1990). Accurate measurement of blood alcohol concentration with isothermal rebreathing. Journal of Studies on Alcohol, 51(1), 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Pleil, J. D., & Lindstrom, A. B. (1995). Measurement of volatile organic compounds in exhaled breath as collected in evacuated electropolished canisters. Journal of Chromatography B: Biomedical Sciences and Applications, 665(2), 271–279.

    Article  CAS  Google Scholar 

  • Rundell, K. W. (2012). Effect of air pollution on athlete health and performance. British Journal of Sports Medicine, 46(6), 407–412. doi:10.1136/bjsports-2011-090823.

    Article  PubMed  Google Scholar 

  • Smith, D., Spanel, P., Herbig, J., & Beauchamp, J. (2014). Mass spectrometry for real-time quantitative breath analysis. Journal of Breath Research, 8(2), 027101. doi:10.1088/1752-7155/8/2/027101.

    Article  PubMed  Google Scholar 

  • Storer, M., Salmond, J., Dirks, K. N., Kingham, S., & Epton, M. (2014). Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study. Journal of Breath Research, 8(3), 037106. doi:10.1088/1752-7155/8/3/037106.

    Article  PubMed  Google Scholar 

  • Szabo, A., Ruzsanyi, V., Unterkofler, K., Mohacsi, A., Tuboly, E., Boros, M., et al. (2015). Exhaled methane concentration profiles during exercise on an ergometer. Journal of Breath Research, 9(1), 016009. doi:10.1088/1752-7155/9/1/016009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevis, M., Krug, O., Geyer, H., & Schanzer, W. (2017). Expanding analytical options in sports drug testing: Mass spectrometric detection of prohibited substances in exhaled breath. Rapid Communications in Mass Spectrometry, 31, 1290–1296. doi:10.1002/rcm.7903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trefz, P., Kamysek, S., Fuchs, P., Sukul, P., Schubert, J. K., & Miekisch, W. (2017). Drug detection in breath: Non-invasive assessment of illicit or pharmaceutical drugs. Journal of Breath Research, 11(2), 024001. doi:10.1088/1752-7163/aa61bf.

    Article  PubMed  Google Scholar 

  • Tuesta, M., Alvear, M., Carbonell, T., Garcia, G., Guzman-Venegas, R., & Araneda, O. F. (2016). Effect of exercise duration on pro-oxidants and pH in exhaled breath condensate in humans. Journal of Physiology and Biochemistry, 72(2), 353–360. doi:10.1007/s13105-016-0486-4.

    Article  CAS  PubMed  Google Scholar 

  • Turner, M. A., Bandelow, S., Edwards, L., Patel, P., Martin, H. J., Wilson, I. D., et al. (2013). The effect of a paced auditory serial addition test (PASAT) intervention on the profile of volatile organic compounds in human breath: A pilot study. Journal of Breath Research, 7(1), 017102. doi:10.1088/1752-7155/7/1/017102.

    Article  CAS  PubMed  Google Scholar 

  • van der Schee, M. P., Paff, T., Brinkman, P., van Aalderen, W. M. C., Haarman, E. G., & Sterk, P. J. (2015). Breathomics in lung disease. Chest, 147(1), 224–231. doi:10.1378/chest.14-0781.

    Article  PubMed  Google Scholar 

  • Wang, Z., & Wang, C. (2013). Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. Journal of Breath Research, 7(3), 037109. doi:10.1088/1752-7155/7/3/037109.

    Article  PubMed  Google Scholar 

  • Wasserman, K., Beaver, W. L., Sun, X. G., & Stringer, W. W. (2011). Arterial H+ regulation during exercise in humans. Respiratory Physiology & Neurobiology, 178(2), 191–195. doi:10.1016/j.resp.2011.05.018.

    Article  Google Scholar 

Download references

Funding

No funding was received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam M. Heaney.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest to declare.

Ethical approval

No ethical requirements were present for this review article as no novel investigations generating data involving human participants are included.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heaney, L.M., Lindley, M.R. Translation of exhaled breath volatile analyses to sport and exercise applications. Metabolomics 13, 139 (2017). https://doi.org/10.1007/s11306-017-1266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1266-z

Keywords

Navigation