Skip to main content
Log in

Metabolite profiling of developing Camelina sativa seeds

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Camelina sativa is a Brassicaceae with interesting agronomic potential and is considered an alternative oilseed crop. Currently, Camelina is grown mainly for its seed, which shows a high oil content with an unusual fatty acid profile particularly rich in polyunsaturated fatty acids. Camelina seeds contain other potentially valuable compounds and their composition is now relatively well described. However, little information is available on the accumulation dynamics of these compounds during seed development.

Objectives

Our aim is to describe the dynamics of metabolites accumulation during C. sativa seed development.

Methods

After purification by HPLC, the fractions were analyzed by LC–MS and NMR to characterize new compounds. The dynamic of metabolites accumulation during seed development was monitored during 15, 25 and 35 days after flowering, and metabolic profilings were performed by LC–MS and GC–MS.

Results

This study describes for the first time two compounds (quercetin-5b-O-sinapyl-2″-O-apiosyl-3-O-rutinoside and epicatechin-7-O-glucose) that have not previously been identified in the seeds of C. sativa. We also show the accumulation kinetics of various metabolites involved in seed development. These investigations highlight a major reorganization of the metabolome with a depletion of the content of most primary metabolites and a high accumulation of most fatty acids, glucosinolates, flavonoids and sinapic acid derivatives.

Conclusion

This study resulted in the metabolic profile of C. sativa during seed development and enabled to identify two novel compounds in Camelina seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, M., Jordheim, M., Byamukama, R., Mbabazi, A., Ogweng, G., Skaar, I., et al. (2010). Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry, 71, 1558–1563.

    Article  CAS  PubMed  Google Scholar 

  • Angelovici, R., Galili, G., Fernie, A. R., & Fait, A. (2010). Seed desiccation: A bridge between maturation and germination. Trends in Plant Science, 15, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Berhow, M. A., Polat, U., Glinski, J. A., Glensk, M., Vaughn, S. F., Isbell, T., et al. (2013). Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Industrial Crops and Products, 43, 119–125.

    Article  CAS  Google Scholar 

  • Berhow, M. A., Vaughn, S. F., Moser, B. R., Belenli, D., & Polat, U. (2014). Evaluating the phytochemical potential of Camelina: An emerging new crop of old world origin. In R. Jetter (Ed.), Recent Advances in Phytochemistry (pp. 142–148). Cham: Springer.

    Google Scholar 

  • Berti, M., Wilckens, R., Fischer, S., Solis, A., & Johnson, B. (2011). Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Industrial Crops and Products, 34, 1358–1365.

    Article  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X.-Q., Zan, K., Yang, J., Lai, M.-X., & Wang, Q. (2009). A novel flavanone from Ilex hainanensis Merr. Natural Product Research, 23, 442–447.

    Article  CAS  PubMed  Google Scholar 

  • Chung, S.-K., Osawa, T., & Kawakishi, S. (1997). Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Bioscience, Biotechnology, and Biochemistry, 61, 118–123.

    Article  CAS  Google Scholar 

  • Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2, 301–416.

    Article  Google Scholar 

  • Cren-Olivé, C., Wieruszeski, J., Maes, E., & Rolando, C. (2002). Catechin and epicatechin deprotonation followed by 13C NMR. Tetrahedron Letters, 43, 4545–4549.

    Article  Google Scholar 

  • Cui, C.-B., Tezuka, Y., Kikuchi, T., Nakano, H., Tamaoki, T., & Park, J.-H. (1992). Constituents of a fern, Davallia mariesii MOORE. IV. Isolation and structures of a novel norcarotane sesquiterperne glycoside, a chromone glucuronide, and two epicatechin glycosides. Chemical and Pharmaceutical Bulletin, 40, 2035–2040.

    Article  CAS  Google Scholar 

  • Donovan, J. L., Luthria, D. L., Stremple, P., & Waterhouse, A. L. (1999). Analysis of (+)-catechin, (−)-epicatechin and their 3′- and 4′-O-methylated analogs: A comparison of sensitive methods. Journal of Chromatography B, 726, 277–283.

    Article  CAS  Google Scholar 

  • Duan, L.-X., Feng, B.-M., Chen, F., Liu, J.-Y., Li, F., Wang, Y.-Q., et al. (2007). Sinapic acid derivatives from the seeds of Raphanus nussatirus L. Journal of Asian Natural Products Research, 9, 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Fadel, O., El Kirat, K., & Morandat, S. (2011). The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochimica et Biophysica Acta, 1808, 2973–2980.

    Article  CAS  PubMed  Google Scholar 

  • Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A. R., et al. (2006). Arabidopsis seed development and germination is associated with temporally distinct metabolic switches1[W]. Plant Physiology, 142, 839–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathiazad, F., Delazar, A., Amiri, R., & Sarker, S. (2006). Extraction of flavonoids and quantification of rutin from waste tobacco leaves. Iranian Journal of Pharmaceutical Research, 3, 222–227.

    Google Scholar 

  • Foo, L. Y., & Karchesy, J. J. (1989). Polyphenolic glycosides from douglas fir inner bark. Phytochemistry, 28, 1237–1240.

    Article  CAS  Google Scholar 

  • Gräwe, W., & Strack, D. (1986). Partial purification and some properties of l-sinapoylglucose: choline cinapoyltransferase (“sinapine synthase”) from seeds of Raphanus sativus L. and Sinapis alba L. Zeitschrift für Naturforschung C, 41, 28–33.

    Google Scholar 

  • Gugel, R. K., & Falk, K. C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86, 1047–1058.

    Article  Google Scholar 

  • Guvenalp, Z., Kilic, N., Kazaz, C., Kaya, Y., & Demirezer, O. (2006). Chemical constituents of Galium tortumense. Turkish Journal of Chemistry, 30, 515–523.

    CAS  Google Scholar 

  • Hatano, T., Miyatake, H., Natsume, M., Osakabe, N., Takizawa, T., Ito, H., et al. (2002). Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry, 59, 749–758.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, I., Alegre, L., Van Breusegem, F., & Munné-Bosch, S. (2009). How relevant are flavonoids as antioxidants in plants? Trends in Plant Sciences, 14, 125–132.

    Article  CAS  Google Scholar 

  • Jung, M., Choi, J., Chae, H.-S., Cho, J. Y., Kim, Y.-D., Htwe, K. M., et al. (2015). Flavonoids from Symplocos racemosa. Molecules, 20, 358–365.

    Article  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry–based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Marek, R., De Groot, A., Dommisse, R., Lemière, G., & Potacek, M. (1997). (+)#-Catechin: Benzoyl protection of OH groups and NMR study of products. Chemical Papers, 51, 107–110.

    CAS  Google Scholar 

  • Matthäus, B., & Zubr, J. (2000). Variability of specific components in Camelina sativa oilseed cakes. Industrial Crops and Products, 12, 9–18.

    Article  Google Scholar 

  • Moser, B. R. (2010). Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technology, 22, 270–273.

    Article  CAS  Google Scholar 

  • Naczk, M., Amarowicz, R., Sullivan, A., & Shahidi, F. (1998). Current research developments on polyphenolics of rapeseed/canola: A review. Food Chemistry, 62, 489–502.

    Article  CAS  Google Scholar 

  • Niciforovic, N., & Abramovi, H. (2014). Sinapic acid and its derivatives: Natural sources and bioactivity. Comprehensive Reviews in Food Science and Food Safety, 13, 34–51.

    Article  CAS  Google Scholar 

  • Quéro, A., Jousse, C., Lequart-Pillon, M., Gontier, E., Guillot, X., Courtois, B., et al. (2014). Improved stability of TMS derivatives for the robust quantification of plant polar metabolites by gas chromatography–mass spectrometry. Journal of Chromatography B, 970, 36–43.

    Article  Google Scholar 

  • Rodríguez-Rodríguez, M. F., Sánchez-García, A., Salas, J. J., Garcés, R., & Martínez-Force, E. (2013). Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Industrial Crops and Products, 50, 673–679.

    Article  Google Scholar 

  • Russo, R., & Reggiani, R. (2012). Antinutritive compounds in twelve Camelina sativa genotypes. American Journal of Plant Sciences, 3, 1408–1412.

    Article  Google Scholar 

  • Schuster, A., & Friedt, W. (1998). Glucosinolate content and composition as parameters of quality of Camelina seed. Industrial Crops and Products, 7, 297–302.

    Article  CAS  Google Scholar 

  • Terpinc, P., Polak, T., Makuc, D., Ulrih, N. P., & Abramovic, H. (2012). The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chemistry, 131, 580–589.

    Article  CAS  Google Scholar 

  • Vollmann, J., Moritz, T., Kargl, C., Baumgartner, S., & Wagentristl, H. (2007). Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Industrial Crops and Products, 26, 270–277.

    Article  CAS  Google Scholar 

  • Waraich, E. A., Ahmed, Z., Ahmad, R., Saifullah, M. Y. A., Naeem, M. S., & Rengel, Z. (2013). Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crops Science, 7, 1551–1559.

    Google Scholar 

  • Zubr, J. (2010). Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutrition and Food Science, 40, 523–531.

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed, in partnership with the SAS PIVERT, within the framework of the French Institute for Energy Transition (“Institut pour la Transition Energétique”—ITE) P.I.V.E.R.T. (www.institut-pivert.com < http://www.institut-pivert.com>) selected as an Investment for the Future (“Investissements d’Avenir”). This work was supported, as part of Investments for the Future, by the French Government under the reference ANR-001-01. The European Regional Development Fund (equipment acquired) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Mesnard.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Summary table of LC-MS analysis. Supplementary material 1 (XLSX 15 kb)

Supplementary material 2

NMR analysis for quercetin-5b-O-sinapyl-2′′-O-apiosyl-3-O-rutinoside. Supplementary material 2 (DOCX 1033 kb)

Supplementary material 3

NMR analysis for epicatechin-7-O-glucose. Supplementary material 3 (DOCX 1083 kb)

Supplementary material 4

Supplementary material 4 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quéro, A., Molinié, R., Mathiron, D. et al. Metabolite profiling of developing Camelina sativa seeds. Metabolomics 12, 186 (2016). https://doi.org/10.1007/s11306-016-1135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1135-1

Keywords

Navigation